Millipore Sigma Vibrant Logo
 

+magnesium-test


16 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (11)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (6)
  • (3)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. 21210513

    Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone. The aim of this study was to test different calcium and magnesium cement composites in vitro for their use as bone substitution material. Phase composition of calcium deficient hydroxyapatite (Ca(9) (PO(4) )(5) HPO(4) OH), brushite (CaHPO(4) ·2H(2) O), and struvite (MgNH(4) PO(4) ·6H(2) O) specimens has been determined by means of X-ray diffraction, and compressive strength was measured. Cell growth and activity of osteoblastic cells (MG 63) on the different surfaces was determined, and the expression of bone marker proteins was analyzed by western blotting. Cell activity normalized to cell number revealed higher activity of the osteoblasts on brushite and struvite when compared to hydroxyapatite and also the expression of osteoblastic marker proteins was highest on brushite scaffolds. While brushite sets under acidic conditions, formation of struvite occurs under physiological pH, similar to hydroxyapatite cements, providing the possibility of additional modifications with proteins or other active components.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1061
    Nombre del producto:
    Anti-Bone Sialoprotein II Antibody, CT, clone ID1.2
  • Use of sulfate production as a measure of short-term sulfur amino acid catabolism in humans. 11350767

    There is no fully satisfactory method for measuring amino acid catabolism in the nonsteady state that follows normal protein consumption. Because sulfate is the major product of sulfur amino acid catabolism, we tested whether its production can be accurately depicted using simple tracer or nontracer approaches under basal conditions and after the intravenous administration of a known amount of sulfate. In the basal postabsorptive state, serum sulfate concentration and urinary sulfate excretion remained constant for many hours, but the apparent steady-state serum sulfate rate of appearance achieved with primed continuous oral administration of sodium [(34)S]sulfate was 20% higher than urinary sulfate excretion. By contrast, after magnesium sulfate infusion, the increase in sulfate production above basal accounted for 95% over 6 h and 98% over 9 h of the administered dose when measured simply as urinary inorganic sulfate excretion corrected for changes in its extracellular fluid content. Using the latter method, we measured sulfate production after oral methionine and intravenous infusion of methionine in a mixture of other essential amino acids. Sulfate production above basal accounted for 59% over 6 h and 75% over 9 h of the oral methionine dose. Similar results were obtained with the mixed amino acid infusion, but interpretation of the latter experiment was limited by the mild protein sparing (and, hence, reduced endogenous sulfate production) induced by the amino acid infusion. We conclude that a simple nontracer method can provide an accurate measure of sulfate production and, hence, sulfur amino acid catabolism over collection periods as short as 6 h after a test meal. A significant portion of the sulfur derived from methionine appears to be retained in nonprotein compounds immediately after its ingestion.
    Tipo de documento:
    Referencia
    Referencia del producto:
    HI-14K
    Nombre del producto:
    Human Insulin-Specific RIA
  • Determination of sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry. 20006088

    In this study, oil-in-water formulations were optimized to determine sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry (FAAS). This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures and allows the calibration to be carried out using aqueous standards. Different oily phases such as corn oil, decyl oleate and octyl stearate were tested, as well as Tween 80, Triton X-100 and Triton 114 were analyzed as surfactants. The optimum type and proportion of formulations were determined and their use depended on the element studied. The emulsion preparation was performed by a conventional method that involves mixing both phases at 60 degrees C by magnetic stirring and phase inversion to change the water-to-oil ratio by increasing the volume of the surfactant-water external phase and correspondingly decreasing the volume of internal phase. The accuracy of the method was further confirmed by determining the metals in a whole egg powder CRM and recoveries ranged from 97.5% for Mg to 102.2% for Na, with relative standard deviations lower than 2.3%. The precision of the procedures was determined through repeatability (intra-day precision) and intermediate precision (inter-day). The repeatability presented RSD values lower than 4.2%. The intermediate precision was evaluated using the RSD and F-test. The RSD values to intermediate precision was lower than 5.3% and the computed F-values were lower than tabulated F-values, indicating no significant difference between the results obtained on different days. The proposed method including, sample emulsification for subsequent metal determination for FAAS, has proved to be sensitive, reproducible, simple and economical.
    Tipo de documento:
    Referencia
    Referencia del producto:
    2752
    Nombre del producto:
    BrdU Cell Proliferation Kit
  • The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. 15890316

    Cortical dysplasia (CD) is often associated with pharmacoresistant epilepsy. Previous studies showed increased expression of the NMDA receptor subunit NR2B in dysplastic and epileptic human neocortex. We tested the hypothesis that differential increase of NR2B constitutes an epileptogenic mechanism in humans. Dysplastic neocortex and lateral temporal lobe regions resected for treatment of pharmacoresistant seizures were processed for electrophysiological, histological, and immunocytochemical studies. Assignment to the dysplastic (n = 8) and non-dysplastic (n = 8) groups was based on histology. Neurons in dysplastic samples differentially stained for NR2B. Western blot (n = 6) showed an immunoreactive band for NR2B in three out of four dysplastic samples. Epileptiform field potentials (EFP) were elicited in vitro by omission of magnesium from the bath. EFP in dysplastic slices were characterized by multiple afterdischarges, occurring at a significantly higher repetition rate than EFP in non-dysplastic slices. The NR2B-specific NMDA receptor inhibitor ifenprodil (10muM) suppressed EFP in dysplastic slices. In non-dysplastic slices, burst repetition rate did not change with ifenprodil application. In both dysplastic and non-dysplastic slices, EFP were suppressed by a non-specific NMDAR antagonist (APV) or AMPA receptor antagonist (CNQX). These results provide additional evidence that the differential expression of NR2B in dysplastic human neocortex may play a role in the expression of in-situ epileptogenesis in human CD. NR2B may constitute a target for new diagnostic and pharmacotherapeutic approaches.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1557P
    Nombre del producto:
    Anti-NMDAR2B Antibody
  • Potassium ion efflux induced by cationic compounds in yeast. 10209219

    Potassium efflux in yeast induced by several cationic compounds showed different characteristics. All of the observed efflux required glucose as substrate at the concentrations used. For most of them, the phenomenon required binding of the cationic compound to the cell surface and increased with the negative cell surface charge, and for all the compounds tested, it depended on a metabolizable substrate. Efflux induced with terbium chloride appeared more likely due to the function of a K+/H+ antiporter. With DEAE-dextran and dihydrostreptomycin, potassium efflux was dependent on the cell potassium content and was also sensitive to osmotic changes of the medium. DEAE-dextran-provoked efflux was not due to cell disruption. Dihydrostreptomycin seemed to activate a potassium efflux system which could not be studied in isolation, but its inhibition of potassium uptake may also be involved. Except for cells treated with ethidium bromide, no appreciable cell disruption was observed. The potassium efflux observed appears to be a membrane phenomenon reversible after washing with magnesium chloride.
    Tipo de documento:
    Referencia
    Referencia del producto:
    70-600