Millipore Sigma Vibrant Logo
 

1um


71 Results Búsqueda avanzada  
Mostrar
Documentos (35)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (29)
  • (6)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Acyl coenzyme A-binding protein augments bid-induced mitochondrial damage and cell death by activating mu-calpain. 16908521

    Activation of calpain has been shown to occur in some contexts of cell injury and to be essential for loss of cell viability. Part of this may be mediated at the mitochondrial level. It has been demonstrated that calpain activity is necessary for the complete discharge of apoptosis-inducing factor from the mitochondrial intermembrane space and can cause the cleavage of full-length Bid to a more potent truncated form (Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M., and Nicholls, D. G. (2005) J. Biol. Chem. 280, 6447-6454). In this study, we identify acyl-CoA-binding protein (ACBP) as playing a critical role in the activation of calpain upon exposure of mitochondria to both full-length Bid and truncated Bid (t-Bid). Suppression of ACBP levels by small interfering RNA inhibited the t-Bid-induced activation of mitochondrial mu-calpain and release of apoptosis-inducing factor from the mitochondrial intermembrane space and the cleavage of full-length Bid to t-Bid. Moreover, ACBP required the presence of the peripheral benzodiazepine receptor (for which ACBP is a ligand) to be retained at the mitochondria, to activate mu-calpain, and to amplify Bid-induced mitochondrial damage.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB16501
    Nombre del producto:
    Anti-AIF Antibody, internal domain
  • Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. 19286390

    This study was aimed to assess whether ex vivo treatment with granulocyte-colony stimulating factor (G-CSF) modifies biological properties of bone marrow stromal cells (BMSC) and enhances functional recovery by BMSC transplantation into infarct brain. Immunohistochemistry was conducted to characterize the cultured BMSC. The pharmacological effects of G-CSF on their proliferation, cell cycle, and growth factor production were precisely analyzed, using FACS and ELISA techniques. Non-treated or G-CSF treated BMSC were stereotactically transplanted into the mice brain subjected to cerebral infarct, and its effects on functional and histological aspects were evaluated. The BMSC expressed the receptor for G-CSF. Treatment with 0.1muM of G-CSF significantly enhanced the proliferation of BMSC by increasing their population in S phase, and increased their production of SDF-1alpha, HGF, and NGF. When transplanted into infarct brain, G-CSF treated BMSC significantly improved motor function as early as 2 weeks after transplantation, whereas non-treated BMSC did 4 weeks after transplantation. These findings strongly suggest that G-CSF may enhance the proliferation and growth factor production of the cultured BMSC and accelerate functional restoration by BMSC transplantation. Such pharmacological activation of the BMSC may contribute to successful clinical application of BMSC transplantation therapy for ischemic stroke.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CYT304