Millipore Sigma Vibrant Logo
 

Prosep+resins


63 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (57)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (33)
  • (18)
  • (2)
  • (2)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Oct-4B isoform is differentially expressed in breast cancer cells: hypermethylation of regulatory elements of Oct-4A suggests an alternative promoter and transcriptional ... 20433421

    The human Oct-4 gene has three isoforms, Oct-4A, Oct-4B and Oct-4B1, which are thought to be derived from alternative splicing. It remains controversial whether the Oct-4 gene is expressed in cancer cells. Expression of Oct-4A is regulated by two elements, the PE (proximal enhancer) and DE (distal enhancer), but the expression and regulation of Oct-4B are not well known. Here, we firstly report that Oct-4B is expressed at low levels in MCF-7 cells, while the Oct-4A gene is inactivated. By analysing the function of different promoter constructs and the DNA methylation status of three regulatory regions, we demonstrate that the Oct-4A gene in MCF-7 cells is repressed by epigenetic control rather than transcriptional control. In addition, we speculate that the transcription of Oct-4B in MCF-7 cells is differentially regulated by additional regulatory elements. This work will enhance the understanding of Oct-4 gene in differential regulation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • The intracellular distribution of the ES cell totipotent markers OCT4 and Sox2 in adult stem cells differs dramatically according to commercial antibody used. 19199344

    To characterize ES cells, researchers have at their disposal a list of pluripotent markers, such as OCT4. In their quest to determine if adult stem cell populations, such as MSCs and ASCs, are pluripotent, several groups have begun to report the expression of these markers in these cells. Consistent with this, human ASCs (hASCs) are shown in this study to express a plethora of ES pluripotent markers at the gene and protein level, including OCT4, Sox2, and Nanog. When intracellular distribution is examined in hASCs, both OCT4 and Sox2 are expressed within the nuclei of hASCs, consistent with their expression patterns in ES cells. However, a significant amount of expression can be noted within the hASC cytoplasm and a complete absence of nuclear expression is observed for Nanog. Recent descriptions of OCT4 transcript variants may explain the cytoplasmic expression of OCT4 in hASCs and consistent with this, hASCs do express both the OCT4A and 4B transcript variants at the gene level. However, discrepancies arise when these three pluripotent markers are studied at the protein level. Specifically, distinct differences in intracellular expression patterns were noted for OCT4, Sox2, and Nanog from commercial antibody to commercial antibody. These antibody discrepancies persisted when hMSCs and rat ASCs and MSCs were examined. Therefore, confirming the expression of OCT4, Sox2, and Nanog in adult stem cells with today's commercial antibodies must be carefully considered before the designation of pluripotent can be granted.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • Targeting cancer stem cells through L1CAM suppresses glioma growth. 18676824

    Malignant gliomas are lethal cancers that display striking cellular heterogeneity. A highly tumorigenic glioma tumor subpopulation, termed cancer stem cells or tumor-initiating cells, promotes therapeutic resistance and tumor angiogenesis. Therefore, targeting cancer stem cells may improve patient survival. We interrogated the role of a neuronal cell adhesion molecule, L1CAM, in glioma stem cells as L1CAM regulates brain development and is expressed in gliomas. L1CAM(+) and CD133(+) cells cosegregated in gliomas, and levels of L1CAM were higher in CD133(+) glioma cells than normal neural progenitors. Targeting L1CAM using lentiviral-mediated short hairpin RNA (shRNA) interference in CD133(+) glioma cells potently disrupted neurosphere formation, induced apoptosis, and inhibited growth specifically in glioma stem cells. We identified a novel mechanism for L1CAM regulation of cell survival as L1CAM knockdown decreased expression of the basic helix-loop-helix transcription factor Olig2 and up-regulated the p21(WAF1/CIP1) tumor suppressor in CD133(+) glioma cells. To determine if targeting L1CAM was sufficient to reduce glioma stem cell tumor growth in vivo, we targeted L1CAM in glioma cells before injection into immunocompromised mice or directly in established tumors. In each glioma xenograft model, shRNA targeting of L1CAM expression in vivo suppressed tumor growth and increased the survival of tumor-bearing animals. Together, these data show that L1CAM is required for maintaining the growth and survival of CD133(+) glioma cells both in vitro and in vivo, and L1CAM may represent a cancer stem cell-specific therapeutic target for improving the treatment of malignant gliomas and other brain tumors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • Efficient, high-throughput transfection of human embryonic stem cells. 20659329

    Genetic manipulation of human embryonic stem cells (hESC) has been limited by their general resistance to common methods used to introduce exogenous DNA or RNA. Efficient and high throughput transfection of nucleic acids into hESC would be a valuable experimental tool to manipulate these cells for research and clinical applications.We investigated the ability of two commercially available electroporation systems, the Nucleofection® 96-well Shuttle® System from Lonza and the Neon™ Transfection System from Invitrogen to efficiently transfect hESC. Transfection efficiency was measured by flow cytometry for the expression of the green fluorescent protein and the viability of the transfected cells was determined by an ATP catalyzed luciferase reaction. The transfected cells were also analyzed by flow cytometry for common markers of pluripotency.Both systems are capable of transfecting hESC at high efficiencies with little loss of cell viability. However, the reproducibility and the ease of scaling for high throughput applications led us to perform more comprehensive tests on the Nucleofection® 96-well Shuttle® System. We demonstrate that this method yields a large fraction of transiently transfected cells with minimal loss of cell viability and pluripotency, producing protein expression from plasmid vectors in several different hESC lines. The method scales to a 96-well plate with similar transfection efficiencies at the start and end of the plate. We also investigated the efficiency with which stable transfectants can be generated and recovered under antibiotic selection. Finally, we found that this method is effective in the delivery of short synthetic RNA oligonucleotides (siRNA) into hESC for knockdown of translation activity via RNA interference.Our results indicate that these electroporation methods provide a reliable, efficient, and high-throughput approach to the genetic manipulation of hESC.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • High-content imaging-based screening of microenvironment-induced changes to stem cells. 22811477

    Effective screening methodologies for cells are challenged by the divergent and heterogeneous nature of phenotypes inherent to stem cell cultures, particularly on engineered biomaterial surfaces. In this study, we showcase a high-content, confocal imaging-based methodology to parse single-cell phenotypes by quantifying organizational signatures of specific subcellular reporter proteins and applied this profiling approach to three human stem cell types (embryonic-human embryonic stem cell [hESC], induced pluripotent-induced pluripotent stem cell [iPSC], and mesenchymal-human mesenchymal stem cell [hMSC]). We demonstrate that this method could distinguish self-renewing subpopulations of hESCs and iPSCs from heterogeneous populations. This technique can also provide insights into how incremental changes in biomaterial properties, both physiochemical and mechanical, influence stem cell fates by parsing the organization of stem cell proteins. For example, hMSCs cultured on polymeric films with varying degrees of poly(ethylene glycol) to modulate osteogenic differentiation were parsed using high-content organization of the cytoskeletal protein F-actin. In addition, hMSCs cultured on a self-assembled monolayer platform featuring compositional gradients were screened and descriptors obtained to correlate substrate variations with adipogenic lineage commitment. Taken together, high-content imaging of structurally sensitive proteins can be used as a tool to identify stem cell phenotypes at the single-cell level across a diverse range of culture conditions and microenvironments.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo