Millipore Sigma Vibrant Logo
 

buffer+solution


351 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (47)
  • (30)
  • (5)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Preparative free-solution isotachophoresis for separation of human plasma lipoproteins: apolipoprotein and lipid composition of HDL subfractions. 10828082

    We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migrate according to their net-charge between HDL and VLDL, because ITP has negligible molecular sieve effects. Three HDL subfractions were obtained which were designated fast-, intermediate-, and slow-migrating HDL. To further characterize these HDL subfractions, a newly developed free-solution ITP (FS-ITP)-system was used, that allows micro-preparative separation of human lipoproteins directly from whole plasma (Böttcher, A. et al. 1998. Electrophoresis. 19: 1110-1116). The fractions obtained by FS-ITP were analyzed for their lipid and apolipoprotein composition and by two-dimensional nondenaturing polyacrylamide gradient gel electrophoresis (2D-GGE) with subsequent immunoblotting. fHDL are characterized by the highest proportion of esterified cholesterol of all three subfractions and are relatively enriched in LpA-I. Together with iHDL they contain the majority of plasma apoA-I, while sHDL contain the majority of plasma apoA-IV, apoD, apoE, and apoJ. Pre-beta-HDL were found in separate fractions together with triglyceride-rich fractions between sHDL and LDL. In summary, ITP can separate the bulk of HDL into lipoprotein subfractions, which differ in apolipoprotein composition and electrophoretic mobility. While analytical ITP permits rapid separation and quantitation for diagnostic purposes, FS-ITP can be used to obtain these lipoprotein subfractions on a preparative scale for functional analysis. As FS-ITP is much better suited for preparative purposes than gel electrophoresis, it represents an important novel tool for the functional analysis of lipoprotein subclasses.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABS1030
    Nombre del producto:
    Anti-Apolipoprotein D Antibody
  • ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. 12388234

    Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 +/- 0.33 fold (P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 +/- 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, G(i) protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-483
  • Mutagenesis and analysis of genetic mutations in the GC-rich KISS1 receptor sequence identified in humans with reproductive disorders. 21912371

    The kisspeptin receptor (KISS1R) is a G protein-coupled receptor recognized as the trigger of puberty and a regulator of reproductive competence in adulthood (1,2,3). Inactivating mutations in KISS1R identified in patients have been associated with iodiopathic hypogonadotropic hypogonadism (IHH) (1,2) and precocious puberty (4). Functional studies of these mutants are crucial for our understanding of the mechanisms underlying the regulation of reproduction by this receptor as well as those shaping the disease outcomes, which result from abnormal KISS1R signaling and function. However, the highly GC-rich sequence of the KISS1R gene makes it rather difficult to introduce mutations or amplify the gene encoding this receptor by PCR. Here we describe a method to introduce mutations of interest into this highly GC-rich sequence that has been used successfully to generate over a dozen KISS1R mutants in our laboratory. We have optimized the PCR conditions to facilitate the amplification of a range of KISS1R mutants that include substitutions, deletions or insertions in the KISS1R sequence. The addition of a PCR enhancer solution, as well as of a small percentage of DMSO were especially helpful to improve amplification. This optimized procedure may be useful for other GC-rich templates as well. The expression vector encoding the KISS1R is been used to characterize signaling and function of this receptor in order to understand how mutations may change KISS1R function and lead to the associated reproductive phenotypes. Accordingly, potential applications of KISS1R mutants generated by site-directed mutagenesis can be illustrated by many studies (1,4,5,6,7,8). As an example, the gain-of-function mutation in the KISS1R (Arg386Pro), which is associated with precocious puberty, has been shown to prolong responsiveness of the receptor to ligand stimulation (4) as well as to alter the rate of degradation of KISS1R (9). Interestingly, our studies indicate that KISS1R is degraded by the proteasome, as opposed to the classic lysosomal degradation described for most G protein-coupled receptors (9). In the example presented here, degradation of the KISS1R is investigated in Human Embryonic Kidney Cells (HEK-293) transiently expressing Myc-tagged KISS1R (MycKISS1R) and treated with proteasome or lysosome inhibitors. Cell lysates are immunoprecipitated using an agarose-conjugated anti-myc antibody followed by western blot analysis. Detection and quantification of MycKISS1R on blots is performed using the LI-COR Odyssey Infrared System. This approach may be useful in the study of the degradation of other proteins of interest as well.
    Tipo de documento:
    Referencia
    Referencia del producto:
    16-219
    Nombre del producto:
    Anti-Myc Tag Antibody, clone 4A6, agarose conjugate
  • Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a fun ... 15879005

    Binding of cocaine to the dopamine transporter (DAT) protein blocks synaptic dopamine clearance, triggering the psychoactive effects associated with the drug; the discrete drug-protein interactions, however, remain poorly understood. A longstanding postulate holds that cocaine inhibits DAT-mediated dopamine transport via competition with dopamine for formation of an ionic bond with the DAT transmembrane aspartic acid residue D79. In the present study, DAT mutations of this residue were generated and assayed for translocation of radiolabeled dopamine and binding of radiolabeled DAT inhibitors under identical conditions. When feasible, dopamine uptake inhibition potency and apparent binding affinity K(i) values were determined for structurally diverse DAT inhibitors. The glutamic acid substitution mutant (D79E) displayed values indistinguishable from wild-type DAT in both assays for the charge-neutral cocaine analog 8-oxa-norcocaine, a finding not supportive of the D79 "salt bridge" ligand-docking model. In addressing whether the D79 side chain contributes to the DAT binding sites of other portions of the cocaine pharmacophore, only inhibitors with modifications of the tropane ring C-3 substituent, i.e., benztropine and its analogs, displayed a substantially altered dopamine uptake inhibition potency as a function of the D79E mutation. A single conservative amino acid substitution thus differentiated structural requirements for benztropine function relative to those for all other classical DAT inhibitors. Distinguishing the precise mechanism of action of this DAT inhibitor with relatively low abuse liability from that of cocaine may be attainable using DAT mutagenesis and other structure-function studies, opening the door to rational design of therapeutic agents for cocaine abuse.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB369
    Nombre del producto:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. 21489993

    Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-523
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys9) Antibody
  • AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis. 20142844

    Chromatin structure is important for controlling gene expression, but mechanisms underlying chromatin remodeling are not fully understood. Here we report that an FKBP (FK506 binding protein) type immunophilin, AtFKBP53, possesses histone chaperone activity and is required for repressing ribosomal gene expression in Arabidopsis. The AtFKBP53 protein is a multidomain FKBP with a typical peptidylprolyl isomerase (PPIase) domain and several highly charged domains. Using nucleosome assembly assays, we showed that AtFKBP53 has histone chaperone activity and the charged acidic domains are sufficient for the activity. We show that AtFKBP53 interacts with histone H3 through the acidic domains, whereas the PPIase domain is dispensable for histone chaperone activity or histone binding. Ribosomal RNA gene (18S rDNA) is overexpressed when AtFKBP53 activity is reduced or eliminated in Arabidopsis plants. Chromatin immunoprecipitation assay showed that AtFKBP53 is associated with the 18S rDNA gene chromatin, implicating that AtFKBP53 represses rRNA genes at the chromatin level. This study identifies a new histone chaperone in plants that functions in chromatin remodeling and regulation of transcription.
    Tipo de documento:
    Referencia
    Referencia del producto:
    13-107
    Nombre del producto:
    Core Histones
  • Multiple neurotrophic effects of VEGF on cultured neurons. 20430442

    A large literature demonstrates the multifunctional nature of vascular endothelial growth factor (VEGF). Though initially characterized as an endothelial cell-specific factor, recent studies reveal that VEGF has numerous effects on diverse cell types in the brain including neurons. The objective of this study is to examine the effects of VEGF in cultured cortical neurons on survival, p38 mitogen-activated protein kinase (p38 MAP kinase) activity, pro- and anti-apoptotic protein expression and on release of neurotrophic and neurotoxic factors. The results show that VEGF dose-dependently enhances the survival of neurons in culture. VEGF decreases active caspase 3 levels and increases expression of the anti-apoptotic protein Bcl-2. VEGF decreases phosphorylated p38 MAP kinase level and activity in cortical neurons. In addition to modulating survival/death pathways in cortical neurons, VEGF also regulates release of proteins that affect neuronal viability. VEGF causes a dose-dependent release of the neurotrophic protein pigment epithelial-derived factor (PEDF), while significantly decreasing release of the neurotoxic protein amyloid beta. The VEGF-mediated decrease in amyloid beta is dependent on a functional Flt-1 receptor and is inhibited by dicoumarol, a multifunctional inhibitor of stress-activated protein kinase (SAPK)/JNK and NFkappaB pathways. Taken together, these data demonstrate that the neurotrophic effects of VEGF are likely mediated directly by increasing survival and decreasing apoptotic proteins and signals as well as indirectly by modulating release of proteins that affect neuronal viability.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-280
    Nombre del producto:
    Anti-PEDF Antibody
  • Immobilization of glutaryl-7-aminocephalosporanic acid acylase on silica gel and enhancement of its stability. 12665670

    Glutaryl-7-aminocephalosporanic acid (GL-7-ACA) acylase is an enzyme that converts GL-7-ACA to 7-aminocephalosporanic acid, a starting material for semisynthetic cephalosporin antibiotics. In this study, optimal conditions for the immobilization of GL-7-ACA acylase were determined by experimental observations and statistical methods. The optimal conditions were as follows: 1.1 M phosphate buffer (pH 8.3) as buffer solution, immobilization temperature of 20 degrees C, and immobilization time of 120 min. Unreacted aldehyde groups were quenched by reaction with a low-molecular-weight material such as L-lysine, glycine, and ethanolamine after immobilization in order to enhance the activity of immobilized GL-7-ACA acylase. The activities of immobilized GL-7-ACA acylase obtained by using the low-molecular-weight materials were higher than those obtained by immobilized GL-7-ACA acylase not treated with low-molecular-weight materials. In particular, the highest activity of immobilized GL-7-ACA acylase was obtained using 0.4% (v/v) ethanolamine. We also investigated the effect of sodium cyanoborohydride in order to increase the stability of the linkage between the enzyme and the support. The effect on operational stability was obvious: the activity of immobilized GL-7-ACA acylase treated with 4% (w/w) sodium cyanoborohydride remained almost 100% after 20 times of reuse.
    Tipo de documento:
    Referencia
    Referencia del producto:
    03-104
    Nombre del producto:
    RIPAb+ CUGBP1 - RIP Validated Antibody and Primer Set
  • p53 binding to nucleosomal DNA depends on the rotational positioning of DNA response element. 19887449

    The sequence-specific binding to DNA is crucial for the p53 tumor suppressor function. To investigate the constraints imposed on p53-DNA recognition by nucleosomal organization, we studied binding of the p53 DNA binding domain (p53DBD) and full-length wild-type p53 protein to a single p53 response element (p53RE) placed near the nucleosomal dyad in six rotational settings. We demonstrate that the strongest p53 binding occurs when the p53RE in the nucleosome is bent in the same direction as observed for the p53-DNA complexes in solution and in co-crystals. The p53RE becomes inaccessible, however, if its orientation in the core particle is changed by approximately 180 degrees. Our observations indicate that the orientation of the binding sites on a nucleosome may play a significant role in the initial p53-DNA recognition and subsequent cofactor recruitment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Modulation of choroidal neovascularization by subretinal injection of retinal pigment epithelium and polystyrene microbeads. 19158960

    The study was conducted to create a rapidly developing and reproducible animal model of subretinal choroidal neovascularization (CNV) that allows a time-dependent evaluation of growth dynamics, histopathologic features, and cytokine expression.C57BL/6 and chemoattractant leukocyte protein-2 deficient (DeltaCcl-2) mice were studied. Mice received single or combined subretinal injections of cultured retinal pigment epithelium (RPE; C57BL/6-derived), polystyrene microbeads, or phosphate buffer solution (PBS). Fluorescence angiograms were performed over a period of 3 weeks. Mice were euthanized on post inoculation day 3, 7, 10, 14, or 21, and their eyes were evaluated by light, confocal, and electron microscopy.CNV membranes occurred in all study groups with an overall incidence of 94.3%. They extended in the subretinal space through central breaks in Bruch's membrane. CNV lesions were characterized by dynamic changes such as initiation, active inflammatory, and involution stages. CNV thickness peaked around PI day 7 and was greater in mice that received combined injections of RPE and microbeads or RPE cells alone. Small lesions developed in the control groups (microbeads or PBS only), in DeltaCcl-2, and old C57BL/6 mice. Variable expression of cytokines and growth factors was detected within the membranes.Our murine model represents a reliable approach inducing CNV growth by subretinal injection of either RPE cells alone or RPE cells and microbeads. The development of CNV lesions is a dynamic process that relies in part on macrophage trafficking and age.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo