Millipore Sigma Vibrant Logo
 

c3


6315 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (5,565)
  • (55)
  • (18)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues. 22036612

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs.Copyright © 2011 Elsevier Ltd. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    PP64
    Nombre del producto:
    IgG, Rabbit
  • Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. 25573852

    We have previously shown an increased expression of complement 3 (C3) in the perivascular adipose tissue (PVAT) in the deoxycorticosterone acetate (DOCA)-salt hypertensive model. This study aims to examine the role and underlying mechanism of C3 in PVAT for understanding the pathogenesis of hypertensive vascular remodeling further.The role of C3 in macrophage polarization was investigated using peritoneal macrophages from wild-type and C3-deficient (C3KO) mice because we found that C3 was primarily expressed in macrophages in PVAT of blood vessels from DOCA-salt mice, and results showed a decreased expression of M1 phenotypic marker in contrast to an increased level of M2 marker in the C3KO macrophages. Bone marrow transplantation studies further showed in vivo that DOCA-salt recipient mice had fewer M1 but more M2 macrophages in PVAT when the donor bone marrows were from C3KO compared with those from wild-type mice. Of note, this macrophage polarization shift was accompanied with an ameliorated vascular injury. Furthermore, we identified the complement 5a (C5a) as the major C3 activation product that was involved in macrophage polarization and DOCA-salt-induced vascular injury. Consistently, in vivo depletion of macrophages prevented the induction of C3 and C5a in PVAT, and ameliorated hypertensive vascular injury as well.The presence and activation of bone marrow-derived macrophages in PVAT are crucial for complement activation in hypertensive vascular inflammation, and C5a plays a critical role in DOCA-salt-induced vascular injury by stimulating macrophage polarization toward a proinflammatory M1 phenotype in PVAT.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Molecular and cellular evidence for the alternative lengthening of telomeres (ALT) mechanism in chicken. 21822009

    Telomere maintenance is an important genetic mechanism controlling cellular proliferation. Normally, telomeres are maintained by telomerase which is downregulated upon cellular differentiation in most somatic cell lineages. Telomerase activity is upregulated in immortalized cells and cancers to support an infinite lifespan and uncontrolled cell growth; however, some immortalized and transformed cells lack telomerase activity. Telomerase-negative tumors and immortalized cells utilize an alternative mechanism for maintaining telomeres termed alternative lengthening of telomeres (ALT). This research explored evidence for the ALT pathway in chicken cell lines by studying nontransformed immortalized cell lines (DF-1 and OU2) and comparing them to a normal (mortal) cell line and a transformed cell line (DT40). The research consisted of molecular and cellular analyses including profiling of telomeric DNA (array sizing and total content), telomerase activity, and expression of genes involved in the telomerase, recombination, and ALT pathways. In addition, an immunofluorescence analysis for an ALT marker, i.e. ALT-associated promyelocytic leukemia bodies (APBs), was conducted. Evidence for ALT was observed in the telomerase-negative immortalized cell lines. Additionally, the APB marker was also found in the other cell systems. The attributes of the chicken provide an additional vertebrate model for investigation of the ALT pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The diterpenoid alkaloid noroxoaconitine is a Mapkap kinase 5 (MK5/PRAK) inhibitor. 20640477

    The mitogen-activated protein kinase-activated protein kinase MK5 is ubiquitously expressed in vertebrates and is implicated in cell proliferation, cytoskeletal remodeling, and anxiety behavior. This makes MK5 an attractive drug target. We tested several diterpenoid alkaloids for their ability to suppress MK5 kinase activity. We identified noroxoaconitine as an ATP competitor that inhibited the catalytic activity of MK5 in vitro (IC₅₀ = 37.5 μM; K(i) = 0.675 μM) and prevented PKA-induced nuclear export of MK5, a process that depends on kinase active MK5. MK5 is closely related to MK2 and MK3, and noroxoaconitine inhibited MK3- and MK5- but not MK2-mediated phosphorylation of the common substrate Hsp27. Molecular docking of noroxoaconitine into the ATP binding sites indicated that noroxoaconitine binds more strongly to MK5 than to MK3. Noroxoaconitine and derivatives may help in elucidating the precise biological functions of MK5 and may prove to have therapeutic values.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-447
  • On lateral septum-like characteristics of outputs from the accumbal hedonic "hotspot" of Peciña and Berridge with commentary on the transitional nature of basal forebrain ... 22628122

    Peciña and Berridge (2005; J Neurosci 25:11777-11786) observed that an injection of the μ-opioid receptor agonist DAMGO (D-ala(2) -N-Me-Phe(4) -Glycol(5) -enkephalin) into the rostrodorsal part of the accumbens shell (rdAcbSh) enhances expression of hedonic "liking" responses to the taste of an appetitive sucrose solution. Insofar as the connections of this hedonic "hotspot" were not singled out for special attention in the earlier neuroanatomical literature, we undertook to examine them. We observed that the patterns of inputs and outputs of the rdAcbSh are not qualitatively different from those of the rest of the Acb, except that outputs from the rdAcbSh to the lateral preoptic area and anterior and lateral hypothalamic areas are anomalously robust and overlap extensively with those of the lateral septum. We also detected reciprocal interconnections between the rdAcbSh and lateral septum. Whether and how these connections subserve hedonic impact remains to be learned, but these observations lead us to hypothesize that the rdAcbSh represents a basal forebrain transition area, in the sense that it is invaded by neurons of the lateral septum, or possibly transitional neuronal forms sharing properties of both structures. We note that the proposed transition zone between lateral septum and rdAcbSh would be but one of many in the basal forebrain and conclude by reiterating the longstanding argument that the transitional nature of such boundary areas has functional importance, of which the precise nature will remain elusive until the neurophysiological and neuropharmacological implications of such zones of transition are more generally acknowledged and better addressed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Role of neural NO synthase (nNOS) uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats. 22540017

    Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes.Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls.The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5380
    Nombre del producto:
    Anti-Nitric Oxide Synthase I Antibody
  • The ADMR receptor mediates the effects of adrenomedullin on pancreatic cancer cells and on cells of the tumor microenvironment. 19847298

    BACKGROUND: Adrenomedullin (AM) is highly expressed in pancreatic cancer and stimulates pancreatic cancer cells leading to increased tumor growth and metastasis. The current study examines the role of specific AM receptors on tumor and cells resembling the tumor microenvironment (human pancreatic stellate--HPSC, human umbilical vein-- HUVEC and mouse lung endothelial cells--MLEC).
    Tipo de documento:
    Referencia
    Referencia del producto:
    ECM625
    Nombre del producto:
    In Vitro Angiogenesis Assay Kit
  • Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. 21746892

    Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the early development of Hordeum vulgare × Hordeum bulbosum embryos. The following conclusions regarding the role of the centromere-specific histone H3 variant (CENH3) in the process of chromosome elimination were drawn: (i) centromere inactivity of H. bulbosum chromosomes triggers the mitosis-dependent process of uniparental chromosome elimination in unstable H. vulgare × H. bulbosum hybrids; (ii) centromeric loss of CENH3 protein rather than uniparental silencing of CENH3 genes causes centromere inactivity; (iii) in stable species combinations, cross-species incorporation of CENH3 occurs despite centromere-sequence differences, and not all CENH3 variants get incorporated into centromeres if multiple CENH3s are present in species combinations; and (iv) diploid barley species encode two CENH3 variants, the proteins of which are intermingled within centromeres throughout mitosis and meiosis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-441
    Nombre del producto:
    Anti-dimethyl-Histone H3 (Lys9) Antibody
  • Regulation of ATPase activity of transglutaminase 2 by MT1-MMP: implications for mineralization of MC3T3-E1 osteoblast cultures. 20049897

    A pro-mineralization function for transglutaminase 2 (TG2) has been suggested in numerous studies related to bone, cartilage, and vascular calcification. TG2 is an enzyme which can perform protein crosslinking functions, or act as a GTPase/ATPase depending upon different stimuli. We have previously demonstrated that TG2 can act as an ATPase in a Ca(2+)-rich environment and that it can regulate phosphate levels in osteoblast cultures. In this study, we investigate the role MT1-MMP in regulating the ATPase activity of TG2. We report that proteolytic cleavage of TG2 by MT1-MMP in vitro results in nearly a 3-fold increase in the ATPase activity of TG2 with a concomitant reduction in its protein-crosslinking activity. We show that MC3T3-E1 osteoblasts secreted full-length TG2 and major smaller fragments of 66 and 56 kDa, the latter having ATP-binding abilities. MT1-MMP inhibition by a neutralizing antibody suppressed mineralization of osteoblast cultures to 35% of control, and significantly reduced phosphate levels in conditioned medium (CM). Furthermore, MT1-MMP inhibition abolished two of TG2 fragments in the cultures, one of which, the 56-kDa fragment, has ATPase activity. Neutralization of MT1-MMP at early phases of mineralization significantly reduced mineral deposition, but had no effect in later phases implying MT1-MMP and TG2 might contribute to the initiation of mineralization. The cleavage of TG2 by MT1-MMP likely occurs on the cell surface/pericellular matrix where MT1-MMP and TG2 were co-localized. Based on these data, we propose that MT1-MMP modulates the extracellular function TG2 as part of a regulatory mechanism activates the pro-mineralization function of TG2.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-471
  • IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. 22251702

    HBV infection remains a leading cause of death worldwide. IFN-α inhibits viral replication in vitro and in vivo, and pegylated IFN-α is a commonly administered treatment for individuals infected with HBV. The HBV genome contains a typical IFN-stimulated response element (ISRE), but the molecular mechanisms by which IFN-α suppresses HBV replication have not been established in relevant experimental systems. Here, we show that IFN-α inhibits HBV replication by decreasing the transcription of pregenomic RNA (pgRNA) and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome, both in cultured cells in which HBV is replicating and in mice whose livers have been repopulated with human hepatocytes and infected with HBV. Administration of IFN-α resulted in cccDNA-bound histone hypoacetylation as well as active recruitment to the cccDNA of transcriptional corepressors. IFN-α treatment also reduced binding of the STAT1 and STAT2 transcription factors to active cccDNA. The inhibitory activity of IFN-α was linked to the IRSE, as IRSE-mutant HBV transcribed less pgRNA and could not be repressed by IFN-α treatment. Our results identify a molecular mechanism whereby IFN-α mediates epigenetic repression of HBV cccDNA transcriptional activity, which may assist in the development of novel effective therapeutics.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo