Millipore Sigma Vibrant Logo
 

cell+culture+systems


154 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (52)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. 20186667

    Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular) and macro- (construct expanse) scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3391
    Nombre del producto:
    Anti-Collagen Type I Antibody, clone 5D8-G9
  • Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. 20688809

    Devic's neuromyelitis optica is an inflammatory demyelinating disorder normally restricted to the optic nerves and spinal cord. Since the identification of a specific autoantibody directed against aquaporin 4, neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody, neuromyelitis optica has been considered an entity distinct from multiple sclerosis. Recent findings indicate that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody has a pathogenic role through complement-dependent astrocyte toxicity. However, the link with demyelination remains elusive. Autoantibodies can act as receptor agonists/antagonists or alter antigen density in their target cells. We hypothesized that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody impairs astrocytic function and secondarily leads to demyelination. Rat astrocytes and oligodendrocytes from primary cultures and rat optic nerves were exposed long-term (24 h) to immunoglobulin G in the absence of complement. Immunoglobulin G was purified from the serum of patients with neuromyelitis optica who were either neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive or negative, as well as from healthy controls. Flow cytometry analysis showed a reduction of membrane aquaporin 4 and glutamate transporter type 1 on astrocytes following contact with immunoglobulin G purified from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive serum only. The activity of glutamine synthetase, an astrocyte enzyme converting glutamate into glutamine, decreased in parallel, indicating astrocyte dysfunction. Treatment also reduced oligodendrocytic cell processes and approximately 30% oligodendrocytes died. This deleterious effect was confirmed ex vivo; exposed optic nerves showed reduction of myelin basic protein. Immunoglobulin G from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody seronegative patients and from healthy controls had no similar effect. Neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody did not directly injure oligodendrocytes cultured without astrocytes. A toxic bystander effect of astrocytes damaged by neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on oligodendrocytes was identified. Progressive accumulation of glutamate in the culture medium of neuromyelitis optica-immunoglobulin G/aquaporin 4-antibody-treated glial cells supported the hypothesis of a glutamate-mediated excitotoxic death of oligodendrocytes in our models. Moreover, co-treatment of glial cultures with neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody and d+2-amino-5-phosphonopentanoic acid, a competitive antagonist at the N-methyl-d-aspartate/glutamate receptor, partially protected oligodendrocytes. Co-immunolabelling of oligodendrocyte markers and neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody showed that astrocytic positive processes were in close contact with oligodendrocytes and myelin in rat optic nerves and spinal cord, but far less so in other parts of the central nervous system. This suggests a bystander effect of neuromyelitis optica-immunoglobulin G-damaged astrocytes on oligodendrocytes in the nervous tissues affected by neuromyelitis optica. In conclusion, in these cell culture models we found a direct, complement-independent effect of neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on astrocytes, with secondary damage to oligodendrocytes possibly resulting from glutamate-mediated excitotoxicity. These mechanisms could add to the complement-induced damage, particularly the demyelination, seen in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. 21551073

    Previous studies using in vitro cell culture systems have shown the role of the dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) maintenance. However, it remains to be tested whether these functions of Opa1 are physiologically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse Opa1 in pancreatic beta cells, in which glucose-stimulated ATP production in mitochondria plays a key role in insulin secretion. Beta cells lacking Opa1 maintained normal copy numbers of mtDNA; however, the amount and activity of electron transport chain complex IV were significantly decreased, leading to impaired glucose-stimulated ATP production and insulin secretion. In addition, in Opa1-null beta cells, cell proliferation was impaired, whereas apoptosis was not promoted. Consequently, mice lacking Opa1 in beta cells develop hyperglycemia. The data suggest that the function of Opa1 in the maintenance of the electron transport chain is physiologically relevant in beta cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB932
  • Differentiation of rhesus monkey embryonic stem cells in three-dimensional collagen matrix. 16846041

    During normal embryogenesis, embryonic stem cells (ESCs) reside in the context of complex three-dimensional tissue structures, in particular of extracellular matrices (ECMs), which determine cell migration, proliferation, and differentiation. Therefore, to study ESC differentiation in an in vivo-like microenvironment, three-dimensional culture systems are necessary. Here, we developed protocols for ESC cultures in three-dimensional systems consisting of collagen matrices (collagen gels and porous collagen sponges) to investigate the mechanisms of ESC differentiation as well as the formation of tissue-like structures. In collagen matrices, ESCs differentiate into neural, epithelial, and endothelial lineages. In this system, ESCs form various tissue-like structures. The abilities of ESCs to form such structures in two chemically similar but topologically different matrices are different. In particular, in collagen gels ESCs form gland-like circular structures, whereas in collagen sponges ESCs are scattered through the matrix and form aggregates. To mimic the in vivo situation further, we developed a protocol for co-cultures of ESCs with human dermal fibroblasts or keratinocytes in collagen matrixes. Co-culture with fibroblasts in collagen gel facilitates ESC differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule (NCAM), and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ESC differentiation into cells of an endothelial lineage expressing factor VIII. Thus, the developed protocols promote ESC differentiation into a particular lineage, accompanied by the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for directing ESC differentiation and the formation of organs and tissues.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1637
    Nombre del producto:
    Anti-Tubulin Antibody, beta III isoform, CT, clone TU-20 (Similar to TUJ1)
  • Roles of cell adhesion molecules in tumor angiogenesis induced by cotransplantation of cancer and endothelial cells to nude rats. 12414659

    Roles of cell adhesion molecules mediating the interaction of cancer and endothelial cells in tumor angiogenesis were investigated using new in vitro and in vivo model systems with a cultured murine endothelial cell line (F-2) and human cultured epidermoid cancer cells (A431). The A431 cells exhibited typical in vitro cell adhesion to the endothelial F-2 cells. The initial step of adhesion was mediated by sialyl Lewis(x) (Le(x)) and sialyl Le(a), the carbohydrate determinants expressed on the cancer cells, and E-selectin expressed constitutively on F-2 cells. Prolonged culture led to the implantation of cancer cells into the monolayer of the F-2 cells, which was mediated mainly by alpha(3)beta(1)-integrin. F-2 cells cultured on Matrigel showed evident tube formation, and coculture of F-2 cells with A431 cells led to the formation of A431 cell nests constantly surrounded by tube-like networks consisting of F-2 cells. This in vitro morphogenesis was inhibited by the addition of anti-sialyl Le(x)/Le(a) or anti-beta(1)-integrin antibodies, which led to the formation of cancer cell aggregates that were independent from the F-2 cell networks. This in vitro morphological appearance was exactly reproduced in the in vivo tumors, which were formed when the mixture of A431 and F-2 cells at the ratio of 10:1 were cotransplanted s.c. into the back of nude rats. The tumors of A431 supplemented with F-2 cells were profoundly vascularized throughout by the tubular structures formed by F-2 cells, the lumen of which contained the host rat blood cells. The tumor mass thus formed was an average 5.8-fold as large as control A431 tumors that were grown without F-2 cells. The co-injection of anti-Le(x)/Le(a) or anti-beta(1)-integrin antibodies produced a marked reduction in the size of A431 tumors, which were not vascularized and accompanied an independent tiny remnant clump of F-2 cells. The size of these A431 tumors did not differ significantly from those of control A431 tumors raised without F-2 cells. These results indicate that the interaction of tumor cells and endothelial cells in orderly tumor angiomorphogenesis is highly dependent on the action of cell adhesion molecules mediating the adhesion of cancer cells to endothelial cells, inhibition of which remarkably retards tumor growth and angiogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1980
  • Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. 20375082

    Lead (Pb(2+)) exposure is known to affect presynaptic neurotransmitter release in both in vivo and cell culture models. However, the precise mechanism by which Pb(2+) impairs neurotransmitter release remains unknown. In the current study, we show that Pb(2+) exposure during synaptogenesis in cultured hippocampal neurons produces the loss of synaptophysin (Syn) and synaptobrevin (Syb), two proteins involved in vesicular release. Pb(2+) exposure also increased the number of presynaptic contact sites. However, many of these putative presynaptic contact sites lack Soluble NSF attachment protein receptor complex proteins involved in vesicular exocytosis. Analysis of vesicular release using FM 1-43 dye confirmed that Pb(2+) exposure impaired vesicular release and reduced the number of fast-releasing sites. Because Pb(2+) is a potent N-methyl-D-aspartate receptor (NMDAR) antagonist, we tested the hypothesis that NMDAR inhibition may be producing the presynaptic effects. We show that NMDAR inhibition by aminophosphonovaleric acid mimics the presynaptic effects of Pb(2+) exposure. NMDAR activity has been linked to the signaling of the transsynaptic neurotrophin brain-derived neurotrophic factor (BDNF), and we observed that both the cellular expression of proBDNF and release of BDNF were decreased during the same period of Pb(2+) exposure. Furthermore, exogenous addition of BDNF rescued the presynaptic effects of Pb(2+). We suggest that the presynaptic deficits resulting from Pb(2+) exposure during synaptogenesis are mediated by disruption of NMDAR-dependent BDNF signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. 24465853

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4304
    Nombre del producto:
    Anti-Stage-Specific Embryonic Antigen-4 Antibody, clone MC-813-70
  • Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. 21732331

    Microfluidic systems create significant opportunities to establish highly controlled microenvironmental conditions for screening pluripotent stem cell fate. However, since cell fate is crucially dependent on this microenvironment, it remains unclear as to whether continual perfusion of culture medium supports pluripotent stem cell maintenance in feeder-free, chemically defined conditions, and further, whether optimum perfusion conditions exist for subsequent use of human embryonic stem cell (hESCs) in other microfludic systems. To investigate this, we designed microbioreactors based on resistive flow to screen hESCs under a linear range of flowrates. We report that at low rates (conditions where glucose transport is convection-limited with Péclet number <1), cells are affected by apparent nutrient depletion and waste accumulation, evidenced by reduced cell expansion and altered morphology. At higher rates, cells are spontaneously washed out, and display morphological changes which may be indicative of early-stage differentiation. However, between these thresholds exists a narrow range of flowrates in which hESCs expand comparably to the equivalent static culture system, with regular morphology and maintenance of the pluripotency marker TG30 in >95% of cells over 7 days. For MEL1 hESCs the optimum flowrate also coincided with the time-averaged medium exchange rate in static cultures, which may therefore provide a good first estimate of appropriate perfusion rates. Overall, we demonstrate hESCs can be maintained in microbioreactors under continual flow for up to 7 days, a critical outcome for the future development of microbioreactor-based screening systems and assays for hESC culture.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4427
  • Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. 17152062

    The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. 22287976

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3199Z
    Nombre del producto:
    Anti-E-Cadherin Antibody, clone 67A4, Azide Free