Millipore Sigma Vibrant Logo
 

cobre


567 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (516)
  • (4)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior. 23372705

    Runx2, a member of the family of runt-related transcription factors, is rhythmically expressed in bone and may be involved in circadian rhythms in bone homeostasis and osteogenesis. Runx2 is also expressed in the brain, but its function is unknown. We tested the hypothesis that in the brain, Runx2 may interact with clock-controlled genes to regulate circadian rhythms in behavior. First, we demonstrated diurnal and circadian rhythms in the expression of Runx2 in the mouse brain. Expression of Runx2 mRNA and protein mirrored that of the core clock genes, Period1 and Period2, in the suprachiasmatic nucleus (SCN), the paraventricular nucleus and the olfactory bulb. The rhythm of Runx2 expression was eliminated in the SCN of Bmal1(-/-) mice. Moreover, by crossbreeding mPer2(Luc) mice with Runx2(+/-) mice and recording bioluminescence rhythms, a significant lengthening of the period of rhythms was detected in cultured SCN of Runx2(-/-) animals compared to either Runx2(+/-) or Runx2(+/+) mice. Behavioral analyses of Runx2 mutant mice revealed that Runx2(+/-) animals displayed a significantly lengthened free-running period of running wheel activity compared to Runx2(+/+) littermates. Taken together, these findings provide evidence for clock gene-mediated rhythmic expression of Runx2, and its functional role in regulating circadian period at the level of the SCN and behavior.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Positive regulation of the NADPH oxidase NOX4 promoter in vascular smooth muscle cells by E2F. 18554521

    The generation of reactive oxygen species (ROS) by the NOX family of NADPH oxidases is known to be involved in the regulation of many physiological cellular functions. Unlike other members of this family, NOX4 generates ROS constitutively without the need for a stimulus. The activity of NOX4 is known to be regulated, at least in part, at the level of mRNA expression. However, nothing is known of the molecular mechanisms which underlie its transcriptional regulation. We have therefore determined the transcriptional initiation site of NOX4 in vascular smooth muscle cells (VSMC) and identified NOX4 genomic sequences necessary to effect high levels of expression of a linked luciferase reporter gene in both rat and mouse VSMCs. A potential binding site for members of the E2F family of transcription factors was identified, and electrophoretic mobility-shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays confirmed that this site binds E2F1 both in vitro and in vivo. siRNA against E2F1 decreased NOX4 promoter activity, while site-specific mutation of the core-binding site both downregulated the NOX4 promoter and abolished transregulation by E2F1. These data therefore demonstrate that E2F factor(s) are positive regulators of NOX4 transcription in VSMCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. 23761910

    The core motor symptoms of Parkinson's disease (PD) are attributable to the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed a major factor in PD pathogenesis. Previous work has shown that activity-dependent calcium entry through L-type channels elevates perinuclear mitochondrial oxidant stress in SNc dopaminergic neurons, providing a potential basis for their selective vulnerability. What is less clear is whether this physiological stress is present in dendrites and if Lewy bodies, the major neuropathological lesion found in PD brains, exacerbate it. To pursue these questions, mesencephalic dopaminergic neurons derived from C57BL/6 transgenic mice were studied in primary cultures, allowing for visualization of soma and dendrites simultaneously. Many of the key features of in vivo adult dopaminergic neurons were recapitulated in vitro. Activity-dependent calcium entry through L-type channels increased mitochondrial oxidant stress in dendrites. This stress progressively increased with distance from the soma. Examination of SNc dopaminergic neurons ex vivo in brain slices verified this pattern. Moreover, the formation of intracellular α-synuclein Lewy-body-like aggregates increased mitochondrial oxidant stress in perinuclear and dendritic compartments. This stress appeared to be extramitochondrial in origin, because scavengers of cytosolic reactive oxygen species or inhibition of NADPH oxidase attenuated it. These results show that physiological and proteostatic stress can be additive in the soma and dendrites of vulnerable dopaminergic neurons, providing new insight into the factors underlying PD pathogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • An acidic cluster of the cytoplasmic tail of the RD114 virus glycoprotein controls assembly of retroviral envelopes. 17547695

    Retroviral core proteins, Gag and envelope (Env) glycoproteins are expressed from distinct cellular areas and therefore need to encounter to assemble infectious particles. The intrinsic cell localisation properties of either viral component or their capacity to mutually interact determines the assembly of infectious particles. Here, we address how Env determinants and cellular sorting proteins allow the Env derived from gamma retroviruses, murine leukemia virus (MLV) and RD114, to travel to or from late endosomes (LE), which may represent the Env assembly site of retroviruses in some cells. The individual expression of MLV Env resulted in its accumulation in LE in contrast to RD114 Env that required the presence of gamma retroviral Gag proteins. To discriminate between intrinsic intracellular Env localisation and gamma retroviral Gag/Env interactions in influencing Env viral incorporation, we studied Env assembly on heterologous lentiviral particles on which they are passively recruited. We found that an acidic cluster present at the C-terminus of the RD114 Env cytoplasmic tail determines its sub-cellular localisation and retrograde transport. Mutation of this motif induced late endosomal concentration of the RD114 Env, correlating with increased viral incorporation and infectivity. Reciprocally, the reinforcement of a poorly functional acidic motif in the MLV Env resulted in a marked decrease of its late endosomal localisation, leading to weakly infectious lentiviral particles with low Env densities. Finally, through upregulation versus downregulation of its cellular expression, we show that phosphofurin acidic-cluster-sorting protein 1 (PACS-1) controls the function of the RD114 Env acidic cluster, assigning to this cellular effector a crucial role in modulation of Env assembly of some retroviruses.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL553
    Nombre del producto:
    Anti-CD63 Antibody, clone RFAC4
  • Long non-coding RNA GAS5 antagonizes the chemoresistance of pancreatic cancer cells through down-regulation of miR-181c-5p. 29112934

    To explore the core mechanism of long non-coding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) in the regulation of multidrug resistance of pancreatic cancer cells.mRNA levels of GAS5, miR-181c-5p and Hippo pathway related genes were detected by quantitative real-time PCR (qRT-PCR). Protein levels of MDR-1, MST1, YAP and TAZ were measured by western blot. Cell viability was detected by MTT assay. The combination between GAS5 and miR-181c-5p was confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assay. We also established pancreatic cancer-bearing mice model and analyzed tumor volumes.Our data showed GAS5 expression was significantly down-regulated, miR-181c-5p expression was significantly up-regulated in pancreatic cancer cells. Besides, Overexpresson of GAS5 obviously inhibited cell viability, while GAS5 knockdown showed the opposite outcome. Additionally, we also found that GAS5 negatively regulated miR-181c-5p, and miR-181c-5p dramatically promoted pancreatic cancer cell chemoresistance through inactivating the Hippo signaling. GAS5 regulated chemoresistance and Hippo pathway of pancreatic cancer cells via miR-181c-5p/Hippo. Finally, we confirmed that overexpression of GAS5 inhibited tumor growth in pancreatic cancer-bearing mice model.GAS5 regualtes Hippo signaling pathway via miR-181c-5p to antagonize the development of multidrug resistance in pancreatic cancer cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-700
    Nombre del producto:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit