Millipore Sigma Vibrant Logo
 

ka2


503 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (428)
  • (59)
  • (10)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. 9364075

    The synaptic localization of the kainate receptor subunits GluR6/7 and KA2 and of the ionotropic glutamate receptor subunits delta1/2 was studied in the rat retina using receptor-specific antisera. GluR6/7 and KA2 were present in both synaptic layers of the retina: the inner plexiform layer (IPL) and the outer plexiform layer (OPL). The localization of delta1/2 was restricted to the IPL. Detailed ultrastructural examination showed that in the OPL GluR6/7 was localized in horizontal cell processes postsynaptic to both rod spherules and cone pedicles. It was always only one of the two invaginating horizontal cell processes at the photoreceptor synapses labeled for GluR6/7. KA2 in the OPL was found only postsynaptic to cone pedicles and never postsynaptic to rod spherules. The KA2-labeled processes made flat contacts with the cone pedicles, suggesting they are the dendrites of OFF bipolar cells. In the IPL the different receptor subunits were localized postsynaptically to ribbon synapses of both rod and cone bipolar cells. As a rule, only one of the two postsynaptic elements at the bipolar cell dyad was stained for each of the receptor subunits examined. The selective and heterogeneous distribution of these receptors at the ribbon synapses of the OPL and IPL suggests a high degree of differential processing of the glutamatergic signals.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-315
    Nombre del producto:
    Anti-KA2/GRIK5 (Kainate Receptor) Antibody
  • Distinct subunits in heteromeric kainate receptors mediate ionotropic and metabotropic function at hippocampal mossy fiber synapses. 16354929

    Heteromeric kainate receptors (KARs) containing both glutamate receptor 6 (GluR6) and KA2 subunits are involved in KAR-mediated EPSCs at mossy fiber synapses in CA3 pyramidal cells. We report that endogenous glutamate, by activating KARs, reversibly inhibits the slow Ca2+-activated K+ current I(sAHP) and increases neuronal excitability through a G-protein-coupled mechanism. Using KAR knockout mice, we show that KA2 is essential for the inhibition of I(sAHP) in CA3 pyramidal cells by low nanomolar concentrations of kainate, in addition to GluR6. In GluR6(-/-) mice, both ionotropic synaptic transmission and inhibition of I(sAHP) by endogenous glutamate released from mossy fibers was lost. In contrast, inhibition of I(sAHP) was absent in KA2(-/-) mice despite the preservation of KAR-mediated EPSCs. These data indicate that the metabotropic action of KARs did not rely on the activation of a KAR-mediated inward current. Biochemical analysis of knock-out mice revealed that KA2 was required for the interaction of KARs with Galpha(q/11)-proteins known to be involved in I(sAHP) modulation. Finally, the ionotropic and metabotropic actions of KARs at mossy fiber synapses were differentially sensitive to the competitive glutamate receptor ligands kainate (5 nM) and kynurenate (1 mM). We propose a model in which KARs could operate in two modes at mossy fiber synapses: through a direct ionotropic action of GluR6, and through an indirect G-protein-coupled mechanism requiring the binding of glutamate to KA2.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-315
    Nombre del producto:
    Anti-KA2/GRIK5 (Kainate Receptor) Antibody
  • Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes. 10854273

    Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca(2+) concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca(2+) channel blockers such as nifedipine, or by omitting Ca(2+) or Na(+) in the medium. In the presence of Ca(2+) and Na(+), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca(2+) channel blockers, type E or B botulinum neurotoxin, or incubation at 20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca(2+) channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1592P
    Nombre del producto:
    Anti-NMDAR2C Antibody, also recognizes NMDAR2A and 2B
  • Functional cooperation between KA2 and GluR6 subunits is involved in the ischemic brain injury. 17639597

    We investigated the possible relationships between KA2 subunit and GluR6 subunit, as well as the role of KA2 subunit in neuronal death induced by cerebral ischemia/reperfusion. Our results indicated that intracerebroventricular infusion of KA2 antisense oligodeoxynucleotides (AS) not only knocked down the expressions of KA2 and GluR6, but also suppressed the assembly of the GluR6/KA2-PSD95-MLK3 signaling module, and inhibited JNK activation and phosphorylation of c-jun. In addition, infusion of KA2 AS increased neuronal survival in CA1 region after 5 days of reperfusion. More interestingly, we found that the combination of KA2 and GluR6 AS exerted more significant effects than when pretreated with KA2 AS or GluR6 AS alone. Our results suggest that the KA2 subunit is involved in delayed neuronal death induced by cerebral ischemia, at the same time, it is noteworthy that the functional cooperation between KA2 and GluR6 subunits plays a critical role in the ischemic brain injury by PSD95-MLK3-MKK4/7-JNK3 signal pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-315
    Nombre del producto:
    Anti-KA2/GRIK5 (Kainate Receptor) Antibody
  • Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. 8873866

    The dorsal cochlear nucleus (DCN) is a major brain center for integration of auditory information, and excitatory amino acid neurotransmission plays a central role in the processing of this information. In this study, the distribution of glutamate receptors was examined with preembedding immunocytochemistry, using 14 antibodies to ionotropic (GluR1, GluR2/3, GluR4, GluR5-7, GluR6/7, KA2, NR1, NR2A/B, delta 1/2) and metabotropic (mGluR1 alpha, mGluR2/3, mGluR5) glutamate receptor subtypes. Each of these antibodies produced a specific immunolabeling pattern, including a variety of postsynaptic, presynaptic, and glial localizations. Some antibodies showed widespread distribution patterns, notably the antibodies to the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits, GluR2 and GluR3, and the N-methyl-D-aspartate (NMDA) receptor subunit, NR1. In contrast, antibodies to other glutamate receptor subunits produced more restricted distribution patterns, especially that to GluR1, which stained the outer neuropil of the DCN, cartwheel cells, and a small population of presumptive interneurons associated with the dorsal acoustic stria, but produced little or no staining in fusiform cells or deep DCN neurons. Staining of the postsynaptic density and membrane of the granule cell-parallel fiber/cartwheel cell spins synapse was most prevalent with delta 1/2 and mGluR1 alpha antibodies. A unique pattern of staining was found with mGluR2/3 antibody--with staining concentrated in Golgi cells and unipolar brush cells of the middle to deep DCN. Distribution of some glutamate receptors in the DCN shows similarities to that of the cerebellum, where delta 2 and mGluR1 alpha may modulate neurotransmission at parallel fiber synapses, while mGluR2 and/or mGluR3 may modulate mossy terminal function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-676
    Nombre del producto:
    Anti-mGluR2/3 Antibody
  • Intracellular trafficking of KA2 kainate receptors mediated by interactions with coatomer protein complex I (COPI) and 14-3-3 chaperone systems. 16595684

    Assembly and trafficking of neurotransmitter receptors are processes contingent upon interactions between intracellular chaperone systems and discrete determinants in the receptor proteins. Kainate receptor subunits, which form ionotropic glutamate receptors with diverse roles in the central nervous system, contain a variety of trafficking determinants that promote either membrane expression or intracellular sequestration. In this report, we identify the coatomer protein complex I (COPI) vesicle coat as a critical mechanism for retention of the kainate receptor subunit KA2 in the endoplasmic reticulum. COPI subunits immunoprecipitated with KA2 subunits from both cerebellum and COS-7 cells, and beta-COP protein interacted directly with immobilized KA2 peptides containing the arginine-rich retention/retrieval determinant. Association between COPI proteins and KA2 subunits was significantly reduced upon alanine substitution of this signal in the cytoplasmic tail of KA2. Temperature-sensitive degradation of COPI complex proteins was correlated with an increase in plasma membrane localization of the homologous KA2 receptor. Assembly of heteromeric GluR6a/KA2 receptors markedly reduced association of KA2 and COPI. Finally, the reduction in COPI binding was correlated with an increased association with 14-3-3 proteins, which mediate forward trafficking of other integral signaling proteins. These interactions therefore represent a critical early checkpoint for biosynthesis of functional KARs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-315
    Nombre del producto:
    Anti-KA2/GRIK5 (Kainate Receptor) Antibody
  • SAP90 binds and clusters kainate receptors causing incomplete desensitization. 9808460

    The mechanism of kainate receptor targeting and clustering is still unresolved. Here, we demonstrate that members of the SAP90/PSD-95 family colocalize and associate with kainate receptors. SAP90 and SAP102 coimmunoprecipitate with both KA2 and GluR6, but only SAP97 coimmunoprecipitates with GluR6. Similar to NMDA receptors, GluR6 clustering is mediated by the interaction of its C-terminal amino acid sequence, ETMA, with the PDZ1 domain of SAP90. In contrast, the KA2 C-terminal region binds to, and is clustered by, the SH3 and GK domains of SAP90. Finally, we show that SAP90 coexpressed with GluR6 or GluR6/KA2 receptors alters receptor function by reducing desensitization. These studies suggest that the organization and electrophysiological properties of synaptic kainate receptors are modified by association with members of the SAP90/PSD-95 family.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-315
    Nombre del producto:
    Anti-KA2/GRIK5 (Kainate Receptor) Antibody
  • Ionotropic glutamate receptor expression in preganglionic neurons of the rat inferior salivatory nucleus. 18096442

    Glutamate receptor (GluR) subunit composition of inferior salivatory nucleus (ISN) neurons was studied by immunohistochemical staining of retrogradely labeled neurons. Preganglionic ISN neurons innervating the von Ebner or parotid salivary glands were labeled by application of a fluorescent tracer to the lingual-tonsilar branch of the glossopharyngeal nerve or the otic ganglion respectively. We used polyclonal antibodies to glutamate receptor subunits NR1, NR2A, NR2B, (NMDA receptor subunits) GluR1, GluR2, GluR3, GluR4 (AMPA receptor subunits), and GluR5-7, KA2 (kainate receptor subunits) to determine their expression in ISN neurons. The distribution of the NMDA, AMPA and kainate receptor subunits in retrogradely labeled ISN neurons innervating the von Ebner and parotid glands was qualitatively similar. The percentage of retrogradley labeled ISN neurons innervating the parotid gland expressing the GluR subunits was always greater than those innervating the von Ebner gland. For both von Ebner and parotid ISN neurons, NR2A subunit staining had the highest expression and the lowest expression of GluR subunit staining was NR2B for von Ebner ISN neurons and GluR1 for parotid ISN neurons. The percentage of NR2B and GluR4 expressing ISN neurons was significantly different between the two glands. The percentage of ISN neurons that expressed GluR receptor subunits ranged widely indicating that the distribution of GluR subunit expression differs amongst the ISN neurons. While ISN preganglionic neurons express all the GluR subunits, differences in the percentage of ISN neurons expression between neurons innervating the von Ebner and parotid glands may relate to the different functional roles of these glands.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5216
    Nombre del producto:
    Anti-NMDAR2A Antibody
  • Growth factor-induced transcription of GluR1 increases functional AMPA receptor density in glial progenitor cells. 8987751

    We analyzed the effects of two growth factors that regulate oligodendrocyte progenitor (O-2A) development on the expression of glutamate receptor (GluR) subunits in cortical O-2A cells. In the absence of growth factors, GluR1 was the AMPA subunit mRNA expressed at the lowest relative level. Basic fibroblast growth factor (bFGF) caused an increase in GluR1 and GluR3 steady-state mRNA levels. Platelet-derived growth factor (PDGF) did not modify the mRNA levels for any of the AMPA subunits but selectively potentiated the effects of bFGF on GluR1 mRNA (4.5-fold increase). The kainate-preferring subunits GluR7, KA1, and KA2 mRNAs were increased by bFGF, but these effects were not modified by cotreatment with PDGF. Nuclear run-on assays demonstrated that PDGF+bFGF selectively increased the rate of GluR1 gene transcription (2.5-fold over control). Western blot analysis showed that GluR1 protein levels were increased selectively (sixfold over control) by PDGF+bFGF. Functional expression was assessed by rapid application of AMPA to cultured cells. AMPA receptor current densities (pA/pF) were increased nearly fivefold in cells treated with PDGF+bFGF, as compared with untreated cells. Further, AMPA receptor channels in cells treated with PDGF+bFGF were more sensitive to voltage-dependent block by intracellular polyamines, as expected from the robust and selective enhancement of GluR1 expression. Our combined molecular and electrophysiological findings indicate that AMPA receptor function can be regulated by growth factor-induced changes in the rate of gene transcription.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. 17366611

    Recent studies suggested that different types of OFF bipolar cells express specific types of ionotropic (AMPA or kainate) glutamate receptors (GluRs) at their contacts with cone pedicles. However, the question of which GluR type is expressed by which type of OFF bipolar cell in primate retina is still open. In this study, the expression of AMPA and kainate receptor subunits at the dendritic tips of flat (OFF) midget bipolar (FMB) cells was analyzed in the retina of the common marmoset, Callithrix jacchus. We used preembedding electron microscopy and double immunofluorescence with subunit-specific antibodies. The FMB cells were labeled with antibodies against the carbohydrate epitope CD15. Cone pedicles were identified with peanut agglutinin. Immunoreactivity for the GluR1 subunit and for CD15 is preferentially located at triad-associated flat contacts. Furthermore, the large majority of GluR1 immunoreactive puncta is localized at the dendritic tips of FMB cells. These results suggest that FMB cells express the AMPA receptor subunit GluR1. In contrast, the kainate receptor subunit GluR5 is not colocalized with the dendritic tips of FMB cells or with the GluR1 subunit. Immunoreactive puncta for the GluR1 subunit are found at all M/L-cone pedicles but are only rarely associated with S-cone pedicles. This is consistent with our recent findings in marmoset retina that FMB cells do not contact S-cone pedicles. The presence of GluR5 clusters at S-cone pedicles indicates that in primate retinas OFF bipolar cells expressing kainate receptor subunits receive some S-cone input.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1504
    Nombre del producto:
    Anti-Glutamate receptor 1 Antibody