Millipore Sigma Vibrant Logo
 

lithium


116 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (50)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. 12967765

    The intrigue of lithium, the simplest drug in the modern pharmacopoeia, extends from its complex actions in cells to its therapeutic effects as a mood stabilizer. New surprises from studies of glycogen synthase kinase 3 (GSK-3) show that lithium reduces GSK-3 activity in two ways, both directly and by increasing the inhibitory phosphorylation of GSK-3. These dual effects can act in concert to magnify the influence of lithium on crucial GSK-3-regulated functions (gene expression, cell structure and survival).
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-903
    Nombre del producto:
    Anti-GSK3α/β Antibody, rabbit monoclonal
  • Lithium regulates hippocampal neurogenesis by ERK pathway and facilitates recovery of spatial learning and memory in rats after transient global cerebral ischemia. 17686496

    Recent studies have demonstrated that lithium has a neuroprotective effect against brain ischemia. Whether this effect is mediated by hippocampal neurogenesis remains unknown. The ERK (extracellular signal-regulated kinase) pathway plays an essential role in regulating neurogenesis. The present study was undertaken to investigate whether lithium regulates hippocampal neurogenesis by the ERK pathway and improves spatial learning and memory deficits in rats after ischemia. Rats were daily injected with lithium (1 mmol/kg) and 2 weeks later subjected to 15-min ischemia induced by four-vessel occlusion method. 5-bromo-2'-deoxyuridine (Brdu; 50mg/kg) was administrated twice daily at postischemic day 6, or for 3 days from postischemic day 6 to 8. We found that lithium increased the ERK1/2 activation after ischemia by western blotting analysis. There was a significant increase in Brdu-positive cells in the hippocampal dentate gyrus after lithium treatment, compared with ischemia group at postischemic days 7 and 21; furthermore, the survival rate of Brdu-positive cells was elevated by lithium. Inhibition of the ERK1/2 activation by U0126 diminished these effects of lithium. The percentages of Brdu-positive cells that expressed a neuronal marker or an astrocytic marker were not significantly influenced by lithium. Moreover, lithium improved the impaired spatial learning and memory ability in Morris water maze, and U0126 attenuated the behavioral improvement by lithium. These results suggest that lithium up-regulates the generation and survival of new-born cells in the hippocampus by the ERK pathway and improves the behavioral disorder in rats after transient global cerebral ischemia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377B
    Nombre del producto:
    Anti-NeuN Antibody, clone A60, biotin conjugated
  • Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. 17299510

    Lithium inhibits glycogen synthase kinase-3 (GSK-3) at therapeutic concentrations; however, it is unclear if this inhibition and its downstream effects on specific signaling pathways are relevant to the treatment of bipolar disorder and depression. One of the targets of GSK-3 is the transcription factor beta-catenin. Normally active GSK-3 phosphorylates beta-catenin, leading to its degradation. Inhibition of GSK-3 therefore increases beta-catenin. We have utilized transgenic mice to investigate the behavioral consequences of CNS beta-catenin overexpression. Transgenic mice overexpressing beta-catenin demonstrated behavioral changes similar to those observed following the administration of lithium, including decreased immobility time in the forced swim test (FST). Further, we show that although acute administration of lithium and overexpression of the beta-catenin transgene inhibits d-amphetamine-induced hyperlocomotion, neither lithium nor the beta-catenin transgene prevents d-amphetamine-induced sensitization, as measured by locomotor activity. Both lithium-treated and beta-catenin mice had an elevated response to d-amphetamine following multiple administrations of the stimulant, though the difference in absolute locomotion was maintained throughout the sensitization time-course. Neither acute lithium nor beta-catenin overexpression had an effect on d-amphetamine-induced stereotyped behavior. The results of this study, in which beta-catenin transgenic mice exhibited behaviors identical to those observed in lithium-treated mice, are consistent with the hypothesis that the behavioral effects of lithium in these models are mediated through its direct inhibition of GSK-3 and the consequent increase in beta-catenin. By associating the behavioral effects of lithium with beta-catenin levels, these data suggest that increasing beta-catenin might be a novel therapeutic strategy for mood disorders.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • Effects of lithium and deafferentation on expression of glycogen synthase kinase-3beta, NFkappaB, beta-catenin and pCreb in the chick cochlear nucleus. 18313644

    The avian brainstem serves as a useful model to answer the question of how afferent activity influences the viability of target neurons. Approximately 20-30% of neurons in the avian cochlear nucleus, nucleus magnocellularis (NM) die following deafferentation (i.e., deafness produced by cochlea removal). Interestingly, Bcl-2 mRNA (but not protein) is upregulated in 20-30% of NM neurons following deafferentation. We have recently shown that chronic treatments of lithium upregulates the neuroprotective protein Bcl-2 and increases neuronal survival following deafferentation. The pathways leading to the upregulation of Bcl-2 expression following these two manipulations are unknown. The present experiments examine changes in glycogen synthase kinase-3 beta (Gsk-3beta), and transcription factors nuclear factor kappaB (NFkappaB), beta-catenin, and pCreb following lithium administration and following deafferentation. These molecules are known to be influenced by lithium and to regulate Bcl-2 expression in other model systems. Lithium decreased immunolabeling for Gsk-3beta and increased expression for all three transcription factors. Deafferentation, however, did not alter Gsk-3beta or NFkappaB, resulted in lower beta-catenin expression, but did increase pCreb immunoreactivity. While it is possible that pCreb is a common link in the regulation of Bcl-2 following these two manipulations, the timing and distribution of pCreb labeling suggests that it is not the sole determinant of Bcl-2 upregulation following deafferentation. It is likely that the regulation of Bcl-2 gene expression by lithium and by deafferentation involves different molecular pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-519
    Nombre del producto:
    Anti-phospho-CREB (Ser133) Antibody
  • Lithium protects against oxidative stress-mediated cell death in α-synuclein-overexpressing in vitro and in vivo models of Parkinson's disease. 21710541

    Lithium has recently been suggested to have neuroprotective properties in relation to several neurodegenerative diseases. In this study, we examined the potential cytoprotective effect of lithium in preventing oxidative stress-induced protein accumulation and neuronal cell death in the presence of increased α-synuclein levels in vitro and in vivo. Specifically, lithium administration was found to protect against cell death in a hydrogen peroxide-treated, stable α-synuclein-enhanced green fluorescent protein (EGFP)-overexpressing dopaminergic N27 cell line. Lithium feeding (0.255% lithium chloride) of 9-month-old pan-neuronal α-synuclein transgenic mice over a 3-month period was also sufficient to prevent accumulation of oxidized/nitrated α-synuclein as a consequence of chronic paraquat/maneb administration in multiple brain regions, including the glomerular layer, mitral cells, and the granule cell layer of the olfactory bulb (OB), striatum, substantia nigra pars compacta (SNpc) and Purkinje cells of the cerebellum. Lithium not only prevented α-synuclein-mediated protein accumulation/aggregation in these brain regions but also protected neuronal cells including mitral cells and dopaminergic SNpc neurons against oxidative stress-induced neurodegeneration. These results suggest that lithium can prevent both α-synuclein accumulation and neurodegeneration in an animal model of PD, suggesting that this drug, already FDA-approved for use in bipolar disorder, may constitute a novel therapy for another human disease.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. 18096191

    In addition to its clinical antimanic effects, lithium also has efficacy in the treatment of depression. However, the mechanism by which lithium exerts its antidepressant effects is unclear. Our objective was to further characterize the effects of peripheral and central administration of lithium in mouse models of antidepressant efficacy as well as to investigate the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in these behaviors. We utilized the mouse forced swim test (FST) and tail suspension test (TST), intracerebroventricular (ICV) lithium administration, AMPA receptor inhibitors, and BS3 crosslinking followed by Western blot. Both short- and long-term administration of lithium resulted in robust antidepressant-like effects in the mouse FST and TST. Using ICV administration of lithium, we show that these effects are due to actions of lithium on the brain, rather than to peripheral effects of the drug. Both ICV and rodent chow (0.4% LiCl) administration paradigms resulted in brain lithium concentrations within the human therapeutic range. The antidepressant-like effects of lithium in the FST and TST were blocked by administration of AMPA receptor inhibitors. Additionally, administration of lithium increased the cell surface expression of GluR1 and GluR2 in the mouse hippocampus. Collectively, these data show that lithium exerts centrally mediated antidepressant-like effects in the mouse FST and TST that require AMPA receptor activation. Lithium may exert its antidepressant effects in humans through AMPA receptors, thus further supporting a role of targeting AMPA receptors as a therapeutic approach for the treatment of depression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1504
    Nombre del producto:
    Anti-Glutamate receptor 1 Antibody
  • Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of ... 21430648

    Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Chronic lithium treatment decreases NG2 cell proliferation in rat dentate hilus, amygdala and corpus callosum. 19439244

    An increasing number of investigations suggest volumetric changes and glial pathology in several brain regions of patients with bipolar disorder. Lithium, used in the treatment of this disorder, has been reported to be neuroprotective and increase brain volume. Here we investigate the effect of lithium on the proliferation and survival of glial cells positive for the chondroitin sulphate proteoglycan NG2 (NG2 cells); a continuously dividing cell type implicated in remyelination and suggested to be involved in regulation of neuronal signaling and axonal outgrowth. Adult male rats were treated with lithium for four weeks and injected with the proliferation marker bromodeoxyuridine (BrdU) before or at the end of the treatment period. Immunohistochemical analysis of brain sections was performed to estimate the number of newly born (BrdU-labeled) NG2 cells and oligodendrocytes in hippocampus, basolateral nuclei of amygdala and corpus callosum. Lithium significantly decreased the proliferation of NG2 cells in dentate hilus of hippocampus, amygdala and corpus callosum, but not in the molecular layer or the cornu ammonis (CA) regions of hippocampus. The effect was more pronounced in the corpus callosum. No effect of lithium on the survival of newborn cells or the number of newly generated oligodendrocytes could be detected. Our results demonstrate that in both white and gray matter brain regions implicated in the pathophysiology of bipolar disorder, chronic lithium treatment significantly decreases the proliferation rate of NG2 cells; the major proliferating cell type of the adult brain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5384
  • Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. 20110614

    Neurofibrillary tangles (NFTs) made of phosphorylated tau proteins are a key lesion of Alzheimer's disease and other neurodegenerative diseases, and previous studies have indicated that lithium can decrease tau phosphorylation in tau transgenic models. In this study, we have reassessed the effectiveness of treatment per os with lithium on the prevention, the arrest, or the reversal of NFT development in a tau transgenic line (Tg30tau) developing severe neurofibrillary pathology in the brain and the spinal cord. Wild-type and Tgtau30 mice were treated per os with lithium carbonate or with natrium carbonate by chronic chow feeding for 8 months starting at the age of 3 months (to test for a preventive effect on NFT formation) or by oral gavage for 1 month starting at the age of 9 months (after development of NFTs). In mice treated by oral gavage, a decrease of tau phosphorylation and of Sarkosyl-insoluble aggregated tau was observed in the brain and in the spinal cord. The density of NFTs identified by Gallyas staining in the hippocampus and in the spinal cord was also significantly reduced and was similar to that observed at the beginning of the lithium treatment. In these animals, the level of brain beta-catenin was increased probably as a result of its stabilization by glycogen synthase kinase-3beta inhibition. Despite this inhibitory effect of lithium on NFT development, the motor and working memory deficits were not significantly rescued in these aged animals. Chronic chow feeding with lithium did not alter the development of NFT. Nevertheless, this study indicates that even a relatively short-term per os treatment leading to high blood concentration of lithium is effective in arresting the formation of NFTs in the hippocampus and the spinal cord of a tau transgenic model.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1510
  • Altered expression of selected genes in kidney of rats with lithium-induced NDI. 15687245

    Lithium treatment is associated with development of nephrogenic diabetes insipidus, caused in part by downregulation of collecting duct aquaporin-2 (AQP2) and AQP3 expression. In the present study, we carried out cDNA microarray screening of gene expression in the inner medulla (IM) of lithium-treated and control rats, and selected genes were then investigated at the protein level by immunoblotting and/or immunohistochemistry. The following genes exhibited significantly altered transcription and mRNA expression levels, and these were compatible with the changes in protein expression. 11beta-Hydroxysteroid dehydrogenase type 2 protein expression in the IM was markedly increased (198 +/- 25% of controls, n = 6), and immunocytochemistry demonstrated an increased labeling of IM collecting duct (IMCD) principal cells. This indicated altered renal mineralocorticoid/glucocorticoid responses in lithium-treated rats. The inhibitor of cyclin-dependent kinases p27 (KIP) protein expression was significantly decreased or undetectable in the IMCD cells, pointing to increased cellular proliferation and remodeling. Heat shock protein 27 protein expression was decreased in the IM (64 +/- 6% of controls, n = 6), likely to be associated with the decreased medullary osmolality in lithium-treated rats. Consistent with this, lens aldose reductase protein expression was markedly decreased in the IM (16 +/- 2% of controls, n = 6), and immunocytochemistry revealed decreased expression in the thin limb cells in the middle and terminal parts of the IM. Ezrin protein expression was upregulated in the IM (158 +/- 16% of controls, n = 6), where it was predominantly expressed in the apical and cytoplasmic domain of the IMCD cells. Increased ezrin expression indicated remodeling of the actin cytoskeleton and/or altered regulation of IMCD transporters. In conclusion, the present study demonstrates changes in gene expression not only in the collecting duct but also in the thin limb of the loop of Henle in the IM, and several of these genes are linked to altered sodium and water reabsorption, cell cycling, and changes in interstitial osmolality.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1296