Millipore Sigma Vibrant Logo
 

mL


2790 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,230)
  • (325)
  • (153)
  • (3)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Calmodulin is essential for cyclin-dependent kinase 4 (Cdk4) activity and nuclear accumulation of cyclin D1-Cdk4 during G1. 9837900

    Although it is known that calmodulin is involved in G1 progression, the calmodulin-dependent G1 events are not well understood. We have analyzed here the role of calmodulin in the activity, the expression, and the intracellular location of proteins involved in G1 progression. The addition of anti-calmodulin drugs to normal rat kidney cells in early G1 inhibited cyclin-dependent kinase 4 (Cdk4) and Cdk2 activities, as well as retinoblastoma protein phosphorylation. Protein levels of cdk4, cyclin D1, cyclin D2, cyclin E, p21, and p27 were not affected after CaM inhibition, whereas decreases in the amount of cyclin A and Cdc2 were observed. The decrease of Cdk4 activity was due neither to changes in its association to cyclin D1 nor to changes in the amount of p21 or p27 bound to cyclin D1-Cdk4 complexes. Calmodulin inhibition also produced a translocation of nuclear cyclin D1 and Cdk4 to the cytoplasm. This translocation could be responsible for the decreased Cdk4 activity upon calmodulin inhibition. Immunoprecipitation, calmodulin affinity chromatography, and direct binding experiments indicated that calmodulin associates with Cdk4 and cyclin D1 through a calmodulin-binding protein. The facts that Hsp90 interacts with Cdk4 and that its inhibition induced Cdk4 and cyclin D1 translocation to the cytoplasm point to Hsp90 as a good candidate for being the calmodulin-binding protein involved in the nuclear accumulation of Cdk4 and cyclin D1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-138
    Nombre del producto:
    Anti-Cyclin A Antibody
  • CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. 15070674

    Trafficking of human CD34+ stem/progenitor cells (HSCs/HPCs) is regulated by chemokines, cytokines, proteolytic enzymes, and adhesion molecules. We report that the adhesion receptor CD44 and its major ligand, hyaluronic acid (HA), are essential for homing into the bone marrow (BM) and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice and engraftment by human HSCs. Homing was blocked by anti-CD44 monoclonal antibodies (mAbs) or by soluble HA, and it was significantly impaired after intravenous injection of hyaluronidase. Furthermore, stromal cell-derived factor-1 (SDF-1) was found to be a rapid and potent stimulator of progenitor adhesion to immobilized HA, leading to formation of actin-containing protrusions with CD44 located at their tips. HPCs migrating on HA toward a gradient of SDF-1 acquired spread and polarized morphology with CD44 concentrating at the pseudopodia at the leading edge. These morphologic alterations were not observed when the progenitors were first exposed to anti-CD44 mAbs, demonstrating a crosstalk between CD44 and CXCR4 signaling. Unexpectedly, we found that HA is expressed on human BM sinusoidal endothelium and endosteum, the regions where SDF-1 is also abundant. Taken together, our data suggest a key role for CD44 and HA in SDF-1-dependent transendothelial migration of HSCs/HPCs and their final anchorage within specific niches of the BM.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1846
    Nombre del producto:
    Anti-C-X-C Chemokine Receptor 4 Antibody, NT
  • Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. 15780469

    Tenascin-C (TNC), an extracellular matrix glycoprotein, is involved in tissue morphogenesis like embryogenesis, wound healing or tumorigenesis. Astrocytes are known to play major roles in wound healing in the CNS. To elucidate the roles of TNC in wound closure by astrocytes, we have examined the morphological changes of cultured astrocytes in a scratch wound assay and measured the content of soluble TNC released into the medium. We have also localized the expression of TNC mRNA, TNC, glial fibrillary acidic protein (GFAP), vimentin and integrin beta1. After wounding, glial cells rapidly released the largest TNC isoform and proliferated in the border zones. Subsequently, they became polarized with unidirectional processes and finally migrated toward the denuded area. The proliferating border zone cells and pre-migratory cells intensely expressed TNC mRNA, TNC-, vimentin-, GFAP- and integrin beta1-like immunoreactivity, while the migratory cells showed generally reduced expression except the front. Exogenous TNC enhanced cell proliferation and migration, while functional blocking with anti-TNC or anti-integrin beta1 antibody reduced both of them. These results suggest that mechanical injury induces boundary astrocytes to produce and release TNC that promotes cell proliferation and migration via integrin beta1 in an autocrine/paracrine fashion.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3402
    Nombre del producto:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Development of an esophagus acellular matrix tissue scaffold. 16548690

    A cell-extraction protocol yielding an esophagus acellular matrix (EAM) scaffold for use in tissue engineering of an esophagus, including hypotonic lysis, multiple detergent cell extraction steps, and nucleic acid digestion, was developed in a rat model. Histological techniques, burst pressure studies, in vitro esophageal epithelial cell seeding, and in vivo implantation were used to assess cell extraction, extracellular matrix (ECM) preservation, and biocompatibility. Microscopy demonstrated that cell extraction protocols using sodium dodecyl sulfate (SDS) (0.5%, wt/vol) as a detergent resulted in cell-free EAM with retained ECM protein collagen, elastin, laminin, and fibronectin. Burst pressure studies indicated a loss of tensile strength in EAMs, but at intraluminal pressures that were unlikely to affect in vivo application. In vitro cell seeding studies exhibited epithelial cell proliferation with stratification similar to native esophagi after 11 days, and subcutaneously implanted EAMs displayed neovascularization and a minimal inflammatory response after 30 days of implantation. This study presents an esophagus acellular matrix tissue scaffold with preserved ECM proteins, biomechanical properties, and the ability to support esophageal cell proliferation to serve as the foundation for a tissue-engineered esophagus.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB2040
    Nombre del producto:
    Anti-Fibronectin Antibody
  • In vivo effects of zoledronic acid on oral mucosal epithelial cells. 20860766

    Osteonecrosis of the jaw is a serious complication of bisphosphonate treatment for which the pathophysiology is unknown. The purpose of this study was to investigate whether in vivo zoledronic acid (ZA) induces alterations in cell proliferation, apoptosis, and matrix metalloproteinases (MMPs) expression in oral mucosal epithelial cells.One-year-old dogs were either untreated (control group) or given high doses of intravenous ZA (ZA group) for 3 months. The doses of ZA were equivalent to those given to cancer patients, yet were administered two times more frequently (every 2 weeks). Mucosal tissues were assessed immunohistochemically for cell proliferation (proliferating cell nuclear antigen, PCNA), matrix metalloproteinase (MMP) expression, and apoptosis (caspase 3 and TUNEL).There were no significant differences between the groups with respect to PCNA, MMP-2, MMP-14, and TUNEL positive cells. However, the expression of MMP-9 was significantly higher in the control group than in the ZA group (P less than 0.05), whereas the expression of caspase 3 was significantly lower in the control group than in the ZA group (P less than 0.05).  These results suggest that high doses of ZA resulted in higher levels of apoptosis and lower levels of MMP-9 in the oral epithelial cells supporting the idea of bisphosphonate treatment affects the oral mucosa.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB8345
    Nombre del producto:
    Anti-MMP-14 Antibody
  • Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus. 22324774

    Green tea is one of the most-consumed beverages due to its taste and antioxidative polyphenols. However, the protective effects of green tea and its constituent, gallic acid (GA), against kainic acid (KA)-induced seizure have not been studied. We investigated the effect of fresh green tea leaf (GTL) and GA on KA-induced neuronal injury in vivo and in vitro. The results showed that GTL and GA reduced the maximal seizure classes, predominant behavioral seizure patterns, and lipid peroxidation in male FVB mice with status epilepticus (SE). GTL extract and GA provided effective protection against KA-stressed PC12 cells in a dose-dependent manner. In the protective mechanism study, GTL and GA decreased Ca(2+) release, ROS, and lipid peroxidation from KA-stressed PC12 cells. Western blot results revealed that mitogen-activated protein kinases (MAPKs), RhoA, and COX-2 expression were increased in PC12 cells under KA stress, and expression of COX-2 and p38 MAPK, but not RhoA, was significantly reduced by GTL and GA. Furthermore, GTL and GA were able to reduce PGE(2) production from KA-stressed PC12 cells. Taken together, the results showed that GTL and GA provided neuroprotective effects against excitotoxins and may have a clinical application in epilepsy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    20-169
  • Reprogrammed mouse astrocytes retain a \memory\ of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts. 21380643

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a \"memory\" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a \"memory\" of the central nervous system, which confers additional potential upon neuronal differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The Inducible Tissue-Specific Expression of the Human IL-3/GM-CSF Locus Is Controlled by a Complex Array of Developmentally Regulated Enhancers. 23024272

    The closely linked human IL-3 and GM-CSF genes are tightly regulated and are expressed in activated T cells and mast cells. In this study, we used transgenic mice to study the developmental regulation of this locus and to identify DNA elements required for its correct activity in vivo. Because these two genes are separated by a CTCF-dependent insulator, and the GM-CSF gene is regulated primarily by its own upstream enhancer, the main objective in this study was to identify regions of the locus required for correct IL-3 gene expression. We initially found that the previously identified proximal upstream IL-3 enhancers were insufficient to account for the in vivo activity of the IL-3 gene. However, an extended analysis of DNase I-hypersensitive sites (DHSs) spanning the entire upstream IL-3 intergenic region revealed the existence of a complex cluster of both constitutive and inducible DHSs spanning the -34- to -40-kb region. The tissue specificity of these DHSs mirrored the activity of the IL-3 gene, and included a highly inducible cyclosporin A-sensitive enhancer at -37 kb that increased IL-3 promoter activity 40-fold. Significantly, inclusion of this region enabled correct in vivo regulation of IL-3 gene expression in T cells, mast cells, and myeloid progenitor cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-601
    Nombre del producto:
    ChIPAb+ Sp1 - ChIP Validated Antibody and Primer Set
  • Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1β-induced accumulation of β-amy ... 22436237

    Sporadic inclusion body myositis is a severely disabling myopathy. The design of effective treatment strategies is hampered by insufficient understanding of the complex disease pathology. Particularly, the nature of interrelationships between inflammatory and degenerative pathomechanisms in sporadic inclusion body myositis has remained elusive. In Alzheimer's dementia, accumulation of β-amyloid has been shown to be associated with upregulation of nitric oxide. Using quantitative polymerase chain reaction, an overexpression of inducible nitric oxide synthase was observed in five out of ten patients with sporadic inclusion body myositis, two of eleven with dermatomyositis, three of eight with polymyositis, two of nine with muscular dystrophy and two of ten non-myopathic controls. Immunohistochemistry confirmed protein expression of inducible nitric oxide synthase and demonstrated intracellular nitration of tyrosine, an indicator for intra-fibre production of nitric oxide, in sporadic inclusion body myositis muscle samples, but much less in dermatomyositis or polymyositis, hardly in dystrophic muscle and not in non-myopathic controls. Using fluorescent double-labelling immunohistochemistry, a significant co-localization was observed in sporadic inclusion body myositis muscle between β-amyloid, thioflavine-S and nitrotyrosine. In primary cultures of human myotubes and in myoblasts, exposure to interleukin-1β in combination with interferon-γ induced a robust upregulation of inducible nitric oxide synthase messenger RNA. Using fluorescent detectors of reactive oxygen species and nitric oxide, dichlorofluorescein and diaminofluorescein, respectively, flow cytometry revealed that interleukin-1β combined with interferon-γ induced intracellular production of nitric oxide, which was associated with necrotic cell death in muscle cells. Intracellular nitration of tyrosine was noted, which partly co-localized with amyloid precursor protein, but not with desmin. Pharmacological inhibition of inducible nitric oxide synthase by 1400W reduced intracellular production of nitric oxide and prevented accumulation of β-amyloid, nitration of tyrosine as well as cell death inflicted by interleukin-1β combined with interferon-γ. Collectively, these data suggest that, in skeletal muscle, inducible nitric oxide synthase is a central component of interactions between interleukin-1β and β-amyloid, two of the most relevant molecules in sporadic inclusion body myositis. The data further our understanding of the pathology of sporadic inclusion body myositis and may point to novel treatment strategies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo