Millipore Sigma Vibrant Logo
 

methylcytosine


215 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (132)
  • (64)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • The Methylcytosine Dioxygenase Ten-Eleven Translocase-2 (tet2) Enables Elevated GnRH Gene Expression and Maintenance of Male Reproductive Function. 27384303

    Reproduction depends on the establishment and maintenance of elevated GnRH neurosecretion. The elevation of primate GnRH release is accompanied by epigenetic changes. Specifically, cytosine residues within the GnRH gene promoter are actively demethylated, whereas GnRH mRNA levels and peptide release rise. Whether active DNA demethylation has an impact on GnRH neuron development and consequently reproductive function remains unknown. In this study, we investigated whether ten-eleven translocation (tet) enzymes, which initiate the process of active DNA demethylation, influence neuronal function and reproduction. We found that tet2 expression increases with age in the developing mouse preoptic area-hypothalamus and is substantially higher in a mature (GT1-7) than an immature (GN11) GnRH cell line. GnRH mRNA levels and mean GnRH peptide release elevated after overexpression of tet2 in GN11 cells, whereas CRISPR/cas9-mediated knockdown of tet2 in GT1-7 cells led to a significant decline in GnRH expression. Manipulations of tet2 expression altered tet2 genome binding and histone 3 lysine 4 trimethylation abundance at the GnRH promoter. Mice with selective disruption of tet2 in GnRH neurons (GnRH-specific tet2 knockout mice) exhibited no sign of altered pubertal timing in either sex, although plasma LH levels were significantly lower, and fecundity was altered specifically in adult male GnRH-specific tet2 knockout animals, indicating that tet2 may participate in the maintenance GnRH neuronal function. Exposure to bisphenol A, an environmental contaminant that alters GnRH neuron activity, caused a shift in tet2 subcellular localization and a decrease in histone 3 lysine 4 trimethylation abundance at the GnRH promoter. Finally, evaluation of tet2 protein interactions in GT1-7 cells suggests that the influence of tet2 on neuronal function are not limited to nuclear mechanisms but could depend on mitochondrial function, and RNA metabolism. Together, these studies implicate tet2 in the maintenance of GnRH neuronal function and neuroendocrine control of male reproduction.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-10085
    Nombre del producto:
    Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. 24218139

    Polycomb group (PcG) proteins are essential regulators of hematopoietic stem cells. Recent extensive mutation analyses of the myeloid malignancies have revealed that inactivating somatic mutations in PcG genes such as EZH2 and ASXL1 occur frequently in patients with myelodysplastic disorders including myelodysplastic syndromes (MDSs) and MDS/myeloproliferative neoplasm (MPN) overlap disorders (MDS/MPN). In our patient cohort, EZH2 mutations were also found and often coincided with tet methylcytosine dioxygenase 2 (TET2) mutations. Consistent with these findings, deletion of Ezh2 alone was enough to induce MDS/MPN-like diseases in mice. Furthermore, concurrent depletion of Ezh2 and Tet2 established more advanced myelodysplasia and markedly accelerated the development of myelodysplastic disorders including both MDS and MDS/MPN. Comprehensive genome-wide analyses in hematopoietic progenitor cells revealed that upon deletion of Ezh2, key developmental regulator genes were kept transcriptionally repressed, suggesting compensation by Ezh1, whereas a cohort of oncogenic direct and indirect polycomb targets became derepressed. Our findings provide the first evidence of the tumor suppressor function of EZH2 in myeloid malignancies and highlight the cooperative effect of concurrent gene mutations in the pathogenesis of myelodysplastic disorders.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-449
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys27) Antibody
  • Antidepressant-like effect of sodium butyrate is associated with an increase in TET1 and in 5-hydroxymethylation levels in the Bdnf gene. 25618518

    Epigenetic drugs like sodium butyrate (NaB) show antidepressant-like effects in preclinical studies, but the exact molecular mechanisms of the antidepressant effects remain unknown. While research using NaB has mainly focused on its role as a histone deacetylase inhibitor (HDACi), there is also evidence that NaB affects DNA methylation.The purpose of this study was to examine NaB's putative antidepressant-like efficacy in relation to DNA methylation changes in the prefrontal cortex of an established genetic rat model of depression (the Flinders Sensitive Line [FSL]) and its controls (the Flinders Resistant Line).The FSL rats had lower levels of ten-eleven translocation methylcytosine dioxygenase 1 (TET1), which catalyzes the conversion of DNA methylation to hydroxymethylation. As indicated by the behavioral despair test, chronic administration of NaB had antidepressant-like effects in the FSL and was accompanied by increased levels of TET1. The TET1 upregulation was also associated with an increase of hydroxymethylation and a decrease of methylation in brain-derived neurotrophic factor (Bdnf), a gene associated with neurogenesis and synaptic plasticity. These epigenetic changes were associated with a corresponding BDNF overexpression.Our data support the antidepressant efficacy of HDACis and suggest that their epigenetic effects may also include DNA methylation changes that are mediated by demethylation-facilitating enzymes like TET1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    09-872
  • A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. 25183525

    CCCTC-binding factor (CTCF) is a ubiquitously expressed multifunctional transcription factor characterized by chromatin binding patterns often described as largely invariant. In this context, how CTCF chromatin recruitment and functionalities are used to promote cell type-specific gene expression remains poorly defined. Here, we show that, in addition to constitutively bound CTCF binding sites (CTS), the CTCF cistrome comprises a large proportion of sites showing highly dynamic binding patterns during the course of adipogenesis. Interestingly, dynamic CTCF chromatin binding is positively linked with changes in expression of genes involved in biological functions defining the different stages of adipogenesis. Importantly, a subset of these dynamic CTS are gained at cell type-specific regulatory regions, in line with a requirement for CTCF in transcriptional induction of adipocyte differentiation. This relates to, at least in part, CTCF requirement for transcriptional activation of both the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) and its target genes. Functionally, we show that CTCF interacts with TET methylcytosine dioxygenase (TET) enzymes and promotes adipogenic transcriptional enhancer DNA hydroxymethylation. Our study reveals a dynamic CTCF chromatin binding landscape required for epigenomic remodeling of enhancers and transcriptional activation driving cell differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Hydroxymethylation of microRNA-365-3p Regulates Nociceptive Behaviors via Kcnh2. 26937014

    DNA 5-hydroxylmethylcytosine (5hmC) catalyzed by ten-eleven translocation methylcytosine dioxygenase (TET) occurs abundantly in neurons of mammals. However, the in vivo causal link between TET dysregulation and nociceptive modulation has not been established. Here, we found that spinal TET1 and TET3 were significantly increased in the model of formalin-induced acute inflammatory pain, which was accompanied with the augment of genome-wide 5hmC content in spinal cord. Knockdown of spinal TET1 or TET3 alleviated the formalin-induced nociceptive behavior and overexpression of spinal TET1 or TET3 in naive mice produced pain-like behavior as evidenced by decreased thermal pain threshold. Furthermore, we found that TET1 or TET3 regulated the nociceptive behavior by targeting microRNA-365-3p (miR-365-3p). Formalin increased 5hmC in the miR-365-3p promoter, which was inhibited by knockdown of TET1 or TET3 and mimicked by overexpression of TET1 or TET3 in naive mice. Nociceptive behavior induced by formalin or overexpression of spinal TET1 or TET3 could be prevented by downregulation of miR-365-3p, and mimicked by overexpression of spinal miR-365-3p. Finally, we demonstrated that a potassium channel, voltage-gated eag-related subfamily H member 2 (Kcnh2), validated as a target of miR-365-3p, played a critical role in nociceptive modulation by spinal TET or miR-365-3p. Together, we concluded that TET-mediated hydroxymethylation of miR-365-3p regulates nociceptive behavior via Kcnh2.Mounting evidence indicates that epigenetic modifications in the nociceptive pathway contribute to pain processes and analgesia response. Here, we found that the increase of 5hmC content mediated by TET1 or TET3 in miR-365-3p promoter in the spinal cord is involved in nociceptive modulation through targeting a potassium channel, Kcnh2. Our study reveals a new epigenetic mechanism underlying nociceptive information processing, which may be a novel target for development of antinociceptive drugs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-295
    Nombre del producto:
    Chromatin Immunoprecipitation (ChIP) Assay Kit
  • Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. 24340069

    Hydroxymethylcytosine in the genome is reported to be an intermediate of demethylation. In the present study, we demonstrated that maintenance methyltransferase Dnmt1 scarcely catalyzed hemi-hydroxymethylated DNA and that the hemi-hydroxymethylated DNA was not selectively recognized by the SRA domain of Uhrf1, indicating that hydroxymethylcytosine is diluted in a replication-dependent manner. A high level of 5-hydroxymethylcytosine in mouse embryonic stem cells was produced from the methylcytosine supplied mainly by de novo-type DNA methyltransferases Dnmt3a and Dnmt3b. The promoter regions of the HoxA gene cluster showed a high hydroxymethylation level whilst the methylcytosine level was quite low, suggesting that methylated CpG is actively hydroxylated during proliferation. All the results indicate that removal and production of hydroxymethylcytosine are regulated in replication-dependent manners in mouse embryonic stem cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • An elaborate pathway required for Ras-mediated epigenetic silencing. 17960246

    The conversion of a normal cell to a cancer cell occurs in several steps and typically involves the activation of oncogenes and the inactivation of tumour suppressor and pro-apoptotic genes. In many instances, inactivation of genes critical for cancer development occurs by epigenetic silencing, often involving hypermethylation of CpG-rich promoter regions. It remains to be determined whether silencing occurs by random acquisition of epigenetic marks that confer a selective growth advantage or through a specific pathway initiated by an oncogene. Here we perform a genome-wide RNA interference (RNAi) screen in K-ras-transformed NIH 3T3 cells and identify 28 genes required for Ras-mediated epigenetic silencing of the pro-apoptotic Fas gene. At least nine of these RESEs (Ras epigenetic silencing effectors), including the DNA methyltransferase DNMT1, are directly associated with specific regions of the Fas promoter in K-ras-transformed NIH 3T3 cells but not in untransformed NIH 3T3 cells. RNAi-mediated knockdown of any of the 28 RESEs results in failure to recruit DNMT1 to the Fas promoter, loss of Fas promoter hypermethylation, and derepression of Fas expression. Analysis of five other epigenetically repressed genes indicates that Ras directs the silencing of multiple unrelated genes through a largely common pathway. Last, we show that nine RESEs are required for anchorage-independent growth and tumorigenicity of K-ras-transformed NIH 3T3 cells; these nine genes have not previously been implicated in transformation by Ras. Our results show that Ras-mediated epigenetic silencing occurs through a specific, complex, pathway involving components that are required for maintenance of a fully transformed phenotype.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-729
    Nombre del producto:
    Anti-CTCF Antibody
  • Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination. 25355512

    5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mouse liver extracts and demonstrate that the enzyme responsible for the cleavage of 5hmC-modified DNA is Endonuclease G (EndoG). We show that recombinant EndoG preferentially recognizes and cleaves a core sequence when one specific cytosine within that core sequence is hydroxymethylated. Additionally, we provide in vivo evidence that EndoG catalyzes the formation of double-stranded DNA breaks and that this cleavage is dependent upon the core sequence, EndoG and 5hmC. Finally, we demonstrate that the 5hmC modification can promote conservative recombination in an EndoG-dependent manner.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. 24335252

    Ten-eleven translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and 5caC can be excised and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. Genome-wide DNA methylation is erased in the transition from metastable states to the ground state of embryonic stem cells (ESCs) and in migrating primordial germ cells (PGCs), although some resistant regions become demethylated only in gonadal PGCs. Understanding the mechanisms underlying global hypomethylation in naive ESCs and developing PGCs will be useful for realizing cellular pluripotency and totipotency. In this study, we found that PRDM14, the PR domain-containing transcriptional regulator, accelerates the TET-BER cycle, resulting in the promotion of active DNA demethylation in ESCs. Induction of Prdm14 expression transiently elevated 5hmC, followed by the reduction of 5mC at pluripotency-associated genes, germline-specific genes and imprinted loci, but not across the entire genome, which resembles the second wave of DNA demethylation observed in gonadal PGCs. PRDM14 physically interacts with TET1 and TET2 and enhances the recruitment of TET1 and TET2 at target loci. Knockdown of TET1 and TET2 impaired transcriptional regulation and DNA demethylation by PRDM14. The repression of the BER pathway by administration of pharmacological inhibitors of APE1 and PARP1 and the knockdown of thymine DNA glycosylase (TDG) also impaired DNA demethylation by PRDM14. Furthermore, DNA demethylation induced by PRDM14 takes place normally in the presence of aphidicolin, which is an inhibitor of G1/S progression. Together, our analysis provides mechanistic insight into DNA demethylation in naive pluripotent stem cells and developing PGCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    09-872
  • Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. 24594098

    5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain.We present genome-wide and single-base resolution maps of hmC and mC in the human brain by combined application of Tet-assisted bisulfite sequencing and bisulfite sequencing. We demonstrate that hmCs increase markedly from the fetal to the adult stage, and in the adult brain, 13% of all CpGs are highly hydroxymethylated with strong enrichment at genic regions and distal regulatory elements. Notably, hmC peaks are identified at the 5'splicing sites at the exon-intron boundary, suggesting a mechanistic link between hmC and splicing. We report a surprising transcription-correlated hmC bias toward the sense strand and an mC bias toward the antisense strand of gene bodies. Furthermore, hmC is negatively correlated with H3K27me3-marked and H3K9me3-marked repressive genomic regions, and is more enriched at poised enhancers than active enhancers.We provide single-base resolution hmC and mC maps in the human brain and our data imply novel roles of hmC in regulating splicing and gene expression. Hydroxymethylation is the main modification status for a large portion of CpGs situated at poised enhancers and actively transcribed regions, suggesting its roles in epigenetic tuning at these regions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60