Millipore Sigma Vibrant Logo
Atención: Nos hemos mudado. Los productos Merck Millipore ya no pueden adquirirse en MerckMillipore.comMás información
 

mouse+neural+stem+cell


102 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (87)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (66)
  • (20)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Neural stem cell-like gene expression in a mouse ependymoma cell line transformed by human BK polyomavirus. 21073635

    Ependymomas often show characteristics similar to those of neural stem cells in vivo and in vitro. However, few ependymoma cell lines that exhibit neural stem cell-like properties have been reported. In this study, we have characterized a novel cell line, designated Vn19, established from ependymoma that arose in mice inoculated intracerebrally with human BK polyomavirus. Transplanted Vn19 cells in nude mice ubiquitously expressed viral large T antigen in the nucleus and coexpressed neuronal and glial marker proteins in vivo. Remarkably, individual Vn19 cells in dispersed cultures simultaneously expressed marker proteins of neural stem cells (nestin, Bmi1, CD133), neurons (?III tubulin, neurofilament-M) and glial cells (glial fibrillary acidic protein, A2B5, S100?, O4). Ubiquitous and homogenous expression of these multilineage marker proteins was also observed in cloned Vn19 cells. The Vn19 cells formed neurosphere-like aggregates when cultured in the presence of growth factors. Quantitative RT-PCR analysis revealed that expression of mRNA for nestin, neurofilament-H and glial fibrillary acidic protein significantly increased in Vn19 cells cultured under growth factor-deprived conditions. Among MAGE (melanoma antigen) family genes, MAGE-A (A1-8), MAGE-B (B1-3), MAGE-D1, MAGE-E1, MAGE-G1 (necdin-like 2) and MAGE-H1 were expressed in the Vn19 cells, in which neither necdin nor MAGEL2 was detectable. These results suggest that this murine ependymoma cell line recapitulates the gene expression profile in ependymal cells undergoing malignant transformation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB345
    Nombre del producto:
    Anti-O4 Antibody, clone 81
  • A novel population of myeloid cells responding to coxsackievirus infection assists in the dissemination of virus within the neonatal CNS. 20573913

    Enterovirus infection in newborn infants is a significant cause of aseptic meningitis and encephalitis. Using a neonatal mouse model, we previously determined that coxsackievirus B3 (CVB3) preferentially targets proliferating neural stem cells located in the subventricular zone within 24 h after infection. At later time points, immature neuroblasts, and eventually mature neurons, were infected as determined by expression of high levels of viral protein. Here, we show that blood-derived Mac3(+) mononuclear cells were rapidly recruited to the CNS within 12 h after intracranial infection with CVB3. These cells displayed a myeloid-like morphology, were of a peripheral origin based on green fluorescent protein (GFP)-tagged adoptive cell transplant examination, and were highly susceptible to CVB3 infection during their migration into the CNS. Serial immunofluorescence images suggested that the myeloid cells enter the CNS via the choroid plexus, and that they may be infected during their extravasation and passage through the choroid plexus epithelium; these infected myeloid cells ultimately penetrate into the parenchyma of the brain. Before their migration through the ependymal cell layer, a subset of these infected myeloid cells expressed detectable levels of nestin, a marker for neural stem and progenitor cells. As these nestin(+) myeloid cells infected with CVB3 migrated through the ependymal cell layer, they revealed distinct morphological characteristics typical of type B neural stem cells. The recruitment of these novel myeloid cells may be specifically set in motion by the induction of a unique chemokine profile in the CNS induced very early after CVB3 infection, which includes upregulation of CCL12. We propose that intracranial CVB3 infection may lead to the recruitment of nestin(+) myeloid cells into the CNS which might represent an intrinsic host CNS repair response. In turn, the proliferative and metabolic status of recruited myeloid cells may render them attractive targets for CVB3 infection. Moreover, the migratory ability of these myeloid cells may point to a productive method of virus dissemination within the CNS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Differentiation of neuronal cells from NIH3T3 fibroblasts under defined conditions. 21477161

    We attempted to test whether the differentiated NIH/3T3 fibroblasts could be differentiated into neuronal cells without any epigenetic modification. First, a neurosphere assay was carried out, and we successfully generated neurosphere-like cells by floating cultures of NIH/3T3 fibroblasts in neural stem cell medium. These spheres have the ability to form sub-spheres after three passages, and express the neural progenitor markers Nestin, Sox2, Pax6, and Musashi-1. Second, after shifting to a differentiating medium and culturing for an additional 8 days, cells in these spheres expressed the neuronal markers β-tubulin and neurofilament 200 and the astrocytic marker glial fibrillary acidic protein (GFAP). Finally, after treating the spheres with all-trans retinoic acid and taurine, the expression of β-tubulin was increased and the staining of photoreceptor markers rhodopsin and recoverin was observed. The present study shows that NIH/3T3 fibroblasts can generate neurosphere-like, neuron-like, and even photoreceptor-like cells under defined conditions, suggesting that the differentiated non-neuronal cells NIH/3T3 fibroblasts, but not pluripotent cells such as embryonic stem cells or induced pluripotent stem cells, may have the potential to be transdifferentiated into neuronal cells without adding any epigenetic modifier. This transdifferentiation may be due to the possible neural progenitor potential of NIH/3T3 fibroblasts that remains dormant under normal conditions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB345
    Nombre del producto:
    Anti-O4 Antibody, clone 81
  • Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. 22399769

    Transplantation of neural stem cells (NSCs) offers a novel therapeutic strategy for stroke; however, massive grafted cell death following transplantation, possibly due to a hostile host brain environment, lessens the effectiveness of this approach. Here, we have investigated whether reprogramming NSCs with minocycline, a broadly used antibiotic also known to possess cytoprotective properties, enhances survival of grafted cells and promotes neuroprotection in ischemic stroke. NSCs harvested from the subventricular zone of fetal rats were preconditioned with minocycline in vitro and transplanted into rat brains 6 h after transient middle cerebral artery occlusion. Histological and behavioral tests were examined from days 0-28 after stroke. For in vitro experiments, NSCs were subjected to oxygen-glucose deprivation and reoxygenation. Cell viability and antioxidant gene expression were analyzed. Minocycline preconditioning protected the grafted NSCs from ischemic reperfusion injury via upregulation of Nrf2 and Nrf2-regulated antioxidant genes. Additionally, preconditioning with minocycline induced the NSCs to release paracrine factors, including brain-derived neurotrophic factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothelial growth factor. Moreover, transplantation of the minocycline-preconditioned NSCs significantly attenuated infarct size and improved neurological performance, compared with non-preconditioned NSCs. Minocycline-induced neuroprotection was abolished by transfecting the NSCs with Nrf2-small interfering RNA before transplantation. Thus, preconditioning with minocycline, which reprograms NSCs to tolerate oxidative stress after ischemic reperfusion injury and express higher levels of paracrine factors through Nrf2 up-regulation, is a simple and safe approach to enhance the effectiveness of transplantation therapy in ischemic stroke.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. 16037066

    The mouse insulin-like growth factor II receptor (Igf2r) gene and its antisense transcript Air are reciprocally imprinted in most tissues, but in the brain, Igf2r is biallelically expressed despite the imprinted Air expression. To investigate the molecular mechanisms of such brain-specific relaxation of Igf2r imprinting, we analyzed its expression and epigenetic modifications in neurons, glial cells and fibroblasts by the use of primary cortical cell cultures. In glial cells and fibroblasts, Igf2r was maternally expressed and Air was paternally expressed, whereas in the primary cultured neurons, Igf2r was biallelically expressed and Air was not expressed. In the differentially methylated region 2 (DMR2), which includes the Air promoter, allele-specific DNA methylation, differential H3 and H4 acetylation and H3K4 and K9 di-methylation were maintained in each cultured cell type. In DMR1, which includes the Igf2r promoter, maternal-allele-specific DNA hypomethylation, histones H3 and H4 acetylation and H3K4 di-methylation were apparent in glial cells and fibroblasts. However, in neurons, biallelic DNA hypomethylation and biallelic histones H3 and H4 acetylation and H3K4 di-methylation were detected. These data indicate that lack of reciprocal imprinting of Igf2r and Air in the brain results from neuron-specific relaxation of Igf2r imprinting associated with neuron-specific histone modifications in DMR1 and lack of Air expression. Our observation of biallelic Igf2r expression with no Air expression in neurons sheds light on the function of Air as a critical effector in Igf2r silencing and suggests that neuron-specific epigenetic modifications related to the lineage determination of neural stem cells play a critical role in controlling imprinting by antisense transcripts.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers a ... 16367770

    We previously reported that the transplantation of neural stem/progenitor cells (NSPCs) can contribute to the repair of injured spinal cord in adult rats and monkeys. In some cases, however, most of the transplanted cells adhered to the cavity wall and failed to migrate and integrate into the host spinal cord. In this study we focused on chondroitin sulfate proteoglycan (CSPG), a known constituent of glial scars that is strongly expressed after spinal cord injury (SCI), as a putative inhibitor of NSPC migration in vivo. We hypothesized that the digestion of CSPG by chondroitinase ABC (C-ABC) might promote the migration of transplanted cells and neurite outgrowth after SCI. An in vitro study revealed that the migration of NSPC-derived cells was inhibited by CSPG and that this inhibitory effect was attenuated by C-ABC pre-treatment. Consistently, an in vivo study of C-ABC treatment combined with NSPC transplantation into injured spinal cord revealed that C-ABC pre-treatment promoted the migration of the transplanted cells, whereas CSPG-immunopositive scar tissue around the lesion cavity prevented their migration into the host spinal cord in the absence of C-ABC pre-treatment. Furthermore, this combined treatment significantly induced the outgrowth of a greater number of growth-associated protein-43-positive fibers at the lesion epicentre, compared with NSPC transplantation alone. These findings suggested that the application of C-ABC enhanced the benefits of NSPC transplantation for SCI by reducing the inhibitory effects of the glial scar, indicating that this combined treatment may be a promising strategy for the regeneration of injured spinal cord.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB347
    Nombre del producto:
    Anti-Growth Associated Protein 43 Antibody, clone 9-1E12