Millipore Sigma Vibrant Logo
 

nestin


702 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (443)
  • (241)
  • (8)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Regulation of glial differentiation of MHP36 neural multipotent cell line. 11447341

    MHP36 is a nestin bFGF-dependent cell line isolated from embryonic hippocampus using a thermolabile form of SV40 T antigen. When grafted in ischemic hippocampus MHP36 cells differentiate and alleviate the cognitive deficit associated with the lesion. We report here in vitro features of MHP36 cells. First, we found that T Ag expression was not necessary for MHP36 growth as cells cultured at the nonpermissive temperature carry on proliferating at a normal rate, Second, we observed that part of MHP36 cells spontaneously differentiate into astrocytes when bFGF is removed at39 degrees C. This differentiation was increased 4-fold by leukemia inhibitory factor. Third, we found that the majority of cells spontaneously expressed oligodendrocytic markers (CNPase, A2B5, GalC) when cultured at low density.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB382
    Nombre del producto:
    Anti-Myelin Basic Protein Antibody, a.a. 129-138, clone 1
  • Expression change of stem cell-derived neural stem/progenitor cell supporting factor gene in injured spinal cord of rats. 17612595

    OBJECTIVE: To explore the expression change of stem cell-derived neural stem/progenitor cell supporting factor (SDNSF) gene in the injuried spinal cord tissues of rats, and the relation between the expressions of SDNSF and nestin. METHODS: The spinal cord contusion model of rat was established according to Allen's falling strike method. The expression of SDNSF was studied by RT-PCR and in situ hybridization (ISH), and the expression of nestin was detected by immunochemistry. RESULTS: RT-PCR revealed that SDNSF mRNA was upregulated on day 4 after injury, peaked on day 8-12, and decreased to the sham operation level on day 16. ISH revealed that SDNSF mRNA was mainly expressed in the gray matter cells, probably neurons, of spinal cord. The immunohistochemistry showed that accompanied with SDNSF mRNA upregulation, the nestin-positive cells showed erupted roots, migrated peripherad and proliferation on the 8-day slice. However, the distribution pattern of these new cells was different from that of SDNSF-positive cells. CONCLUSION: (1) SDNSF is expressed in the gray matter of spinal cord. The expression of SDNSF mRNA in the spinal cord varies with injured time. (2) The nestin-positive cells proliferate accompanied with spinal cord injury repair, but do not secrete SDNSF.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB353
    Nombre del producto:
    Anti-Nestin Antibody, clone rat-401
  • Redistribution of GFAP and alphaB-crystallin after thermal stress in C6 glioma cell line. 16729237

    Some intermediate filament (IF) proteins expressed in the development of glia include nestin, vimentin, and glial fibrillary acidic protein (GFAP). However, GFAP is the major intermediate filament protein of mature astrocytes. To determine the organization of GFAP in glial cells, rat GFAP cDNA tagged with enhanced green fluorescent protein (EGFP) was transfected into the rat C6 glioma cell line. After selection, two stable C6-EGFP-GFAP cell lines were established. Stable C6-EGFP-GFAP cell lines with or without heat shock treatment were analyzed by immunocytochemistry, electron microscopy, and Western blot analysis. In the transient transfection study, EGFP-GFAP transiently expressed in C6 cells formed punctate aggregations in the cytoplasm right after transfection, but gradually a filamentous structure of EGFP-GFAP was observed. The protein level of nestin in the C6-EGFP-GFAP stable clone was similar to that in the pEGFP-C1 transfected C6 stable clones and non-transfected C6 cells, whereas the level of vimentin was reduced in Western blotting. Interestingly, the expression level of small heat shock protein alphaB-crystallin in C6-EGFP-GFAP cells was also enhanced after transfection. Immunostaining patterns of C6-EGFP-GFAP cells showed that GFAP was dispersed as a fine filamentous structure. However, after heat shock treatment, GFAP formed IF bundles in C6-EGFP-GFAP cells. In the meantime, alphaB-crystallin also colocalized with IF bundles of GFAP in C6-EGFP-GFAP cells. The heat-induced GFAP reorganization we found suggested that small heat shock protein alphaB-crystallin may play a functional role regulating the cytoarchitecture of GFAP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical ... 21903726

    Stem cell therapy is a potential treatment for spinal cord injury and different stem cell types have been grafted into animal models and humans suffering from spinal trauma. Due to inconsistent results, it is still an important and clinically relevant question which stem cell type will prove to be therapeutically effective. Thus far, stem cells of human sources grafted into spinal cord mostly included barely defined heterogeneous mesenchymal stem cell populations derived from bone marrow or umbilical cord blood. Here, we have transplanted a well-defined unrestricted somatic stem cell isolated from human umbilical cord blood into an acute traumatic spinal cord injury of adult immune suppressed rat. Grafting of unrestricted somatic stem cells into the vicinity of a dorsal hemisection injury at thoracic level eight resulted in hepatocyte growth factor-directed migration and accumulation within the lesion area, reduction in lesion size and augmented tissue sparing, enhanced axon regrowth and significant functional locomotor improvement as revealed by three behavioural tasks (open field Basso-Beattie-Bresnahan locomotor score, horizontal ladder walking test and CatWalk gait analysis). To accomplish the beneficial effects, neither neural differentiation nor long-lasting persistence of the grafted human stem cells appears to be required. The secretion of neurite outgrowth-promoting factors in vitro further suggests a paracrine function of unrestricted somatic stem cells in spinal cord injury. Given the highly supportive functional characteristics in spinal cord injury, production in virtually unlimited quantities at GMP grade and lack of ethical concerns, unrestricted somatic stem cells appear to be a highly suitable human stem cell source for clinical application in central nervous system injuries.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. 15955829

    Although the detection of several components of the fibroblast growth factor (FGF) signaling pathway in human embryonic stem cells (hESCs) has been reported, the functionality of that pathway and effects on cell fate decisions are yet to be established. In this study we characterized expression of FGF-2, the prototypic member of the FGF family, and its receptors (FGFRs) in undifferentiated and differentiating hESCs; subsequently, we analyzed the effects of FGF-2 on hESCs, acting as both exogenous and endogenous factors. We have determined that undifferentiated hESCs are abundant in several molecular-mass isoforms of FGF-2 and that expression pattern of these isoforms remains unchanged under conditions that induce hESC differentiation. Significantly, FGF-2 is released by hESCs into the medium, suggesting an autocrine activity. Expression of FGFRs in undifferentiated hESCs follows a specific pattern, with FGFR1 being the most abundant species and other receptors showing lower expression in the following order: FGFR1 --> FGFR3 --> FGFR4 --> FGFR2. Initiation of differentiation is accompanied by profound changes in FGFR expression, particularly the upregulation of FGFR1. When hESCs are exposed to exogenous FGF-2, extracellular signal-regulated kinases are phosphorylated and thereby activated. However, the presence or absence of exogenous FGF-2 does not significantly affect the proliferation of hESCs. Instead, increased concentration of exogenous FGF-2 leads to reduced outgrowth of hESC colonies with time in culture. Finally, the inhibitor of FGFRs, SU5402, was used to ascertain whether FGF-2 that is released by hESCs exerts its activities via autocrine pathways. Strikingly, the resultant inhibition of FGFR suppresses activation of downstream protein kinases and causes rapid cell differentiation, suggesting an involvement of autocrine FGF signals in the maintenance of proliferating hESCs in the undifferentiated state. In conclusion from our data, we propose that this endogenous FGF signaling pathway can be implicated in self-renewal or differentiation of hESCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5326
    Nombre del producto:
    Anti-Nestin Antibody, clone 10C2
  • Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord. 21459827

    Improving oligodendroglial differentiation from human foetal neural progenitor cells remains a primordial issue to accomplish successful cell-based therapies in myelin diseases. Here, we combined in situ, in vitro and in vivo approaches to assess the oligodendrogenic potential of different human foetal forebrain regions during the first trimester of gestation. We show for the first time that the initial wave of oligodendrocyte progenitor emergence in the ventral telencephalon onsets as early as 7.5 weeks into gestation. Interestingly, in vitro, isolation of ganglionic eminences yielded oligodendrocyte progenitor-enriched cultures, as compared with cortex and thalamus. Most importantly, single injection of human neural progenitors into rodent models of focal gliotoxic demyelination revealed the great capacity of these cells to survive, extensively migrate and successfully remyelinate the spinal cord, irrespective of their origin. Thus, our study brings novel insights into the biology of early human foetal neural progenitor cells and offers new support for the development of cellular therapeutics for myelin disorders.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9610
    Nombre del producto:
    Anti-Olig-2 Antibody
  • The camptothecin derivative CPT-11 inhibits angiogenesis in a dual-color imageable orthotopic metastatic nude mouse model of human colon cancer. 17465193

    Recent studies have shown the expression of a stem cell marker protein, nestin, in nascent blood vessels in nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice. In the present study, we visualized tumor angiogenesis and evaluated the antiangiogenic efficacy of CPT-11 in ND-GFP nude mice using dual-color fluorescence imaging. We orthotopically implanted ND-GFP nude mice with the human cancer cell line HCT-116 expressing red fluorescent protein (RFP). The mice were treated with CPT-11 at 40 mg/kg on days 7, 10, 14. Tumor angiogenesis was imaged and visualized by dual-color fluorescence imaging on day 17, three days after the last CPT-11 treatment. Tumor volume and the mean nascent blood vessel density were determined and compared to the control mice. The growing tumor had high expressions of nestin in the nascent blood vessels. The nascent blood vessels showed co-localization of the endothelial-cell-specific marker CD-31 under immunohistochemical staining. The nascent blood vessels were highly visible and their density was determined. ND-GFP nude mice that were administered CPT-11 showed significant reduction in the mean nascent blood vessel density and tumor volume. The dual-color model of ND-GFP transgenic nude mice orthotopically implanted with HCT-116 expressing RFP proved to be effective in visualizing and quantitating tumor growth and tumor angiogenesis. The results showed that CPT-11 is an effective inhibitor of angiogenesis and provided strong implications for wider clinical application of CPT-11 for colon cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL1337
    Nombre del producto:
    Anti-PECAM-1 Antibody, clone 390
  • Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin. 15781648

    We have recently shown that the neural-stem cell marker nestin is expressed in hair follicle stem cells and the blood vessel network interconnecting hair follicles in the skin of transgenic mice with nestin regulatory element-driven green fluorescent protein (ND-GFP). The hair follicles were shown to give rise to the nestin-expressing blood vessels in the skin. In the present study, we visualized tumor angiogenesis by dual-color fluorescence imaging in ND-GFP transgenic mice after transplantation of the murine melanoma cell line B16F10 expressing red fluorescent protein. ND-GFP was highly expressed in proliferating endothelial cells and nascent blood vessels in the growing tumor. Results of immunohistochemical staining showed that the blood vessel-specific antigen CD31 was expressed in ND-GFP-expressing nascent blood vessels. ND-GFP expression was diminished in the vessels with increased blood flow. Progressive angiogenesis during tumor growth was readily visualized during tumor growth by GFP expression. Doxorubicin inhibited the nascent tumor angiogenesis as well as tumor growth in the ND-GFP mice transplanted with B16F10-RFP. This model is useful for direct visualization of tumor angiogenesis and evaluation of angiogenic inhibitors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL1337
    Nombre del producto:
    Anti-PECAM-1 Antibody, clone 390
  • Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice. 20810028

    OBJECTIVES: The aim of present study is to investigate more functional neural stem cells (NSCs) could be isolated from brains with amyotrophic lateral sclerosis (ALS) and expanded in vitro, based on previous reports demonstrating de novo neurogenesis is enhanced to replace degenerating neural tissue.METHODS: Thirteen- or eighteen-week-old mutant human Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic ALS and wild-type SOD1 transgenic control mice were utilized. Changes in numbers of NSCs in the dentate gyrus were analyzed by immunohistochemistry against nestin and CD133. NSCs were primarily cultured from hippocampus of ALS or control mice. Expression of NSC markers, in vitro expansion capacity, and differentiating potential were compared.RESULTS: Hippocampus of 13-week-old pre-symptomatic ALS mice harbor more cells that can be propagated for more than 12 passages in vitro, compared with same age control mice. Primarily-cultured cells formed neurospheres in the NSC culture medium, expressed NSC markers, and differentiated into cells with differentiated neural cell characteristics in the differentiation condition confirming that they are NSCs. In contrast, long-term expansible NSCs could not be derived from brains of 18-week-old symptomatic ALS mice with the same experimental techniques, although they had comparable nestin-immunoreactive cells in the dentate gyrus.DISCUSSION: These results would suggest that increased neuroregeneration in early phase of ALS could be translated to regenerative approaches; however, long-term exposure to ALS microenvironments could abolish functional capacities of NSCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. 20104652

    Increasing evidence points to accelerated neurogenesis after stroke, and support of such endogenous neurogenesis has been shown to improve stroke outcome in experimental animal models. The present study analyses post-stroke cerebral cortex after cardiogenic embolism in autoptic human brain. Induction of nestin- and musashi-1-positive cells, potential neural stem/progenitor cells, was observed at the site of ischemic lesions from day 1 after stroke. These two cell populations were present at distinct locations and displayed different temporal profiles of marker expression. However, no surviving differentiated mature neural cells were observed by 90 days after stroke in the previously ischemic region. Consistent with recent reports of neurogenesis in the cerebral cortex after induction of stroke in rodent models, the present current data indicate the presence of a regional regenerative response in human cerebral cortex. Furthermore, observations underline the potential importance of supporting survival and differentiation of endogenous neural stem/progenitor cells in post-stroke human brain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5326
    Nombre del producto:
    Anti-Nestin Antibody, clone 10C2