Millipore Sigma Vibrant Logo
 

ng2


547 Results Búsqueda avanzada  
Mostrar
Documentos (528)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (301)
  • (225)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • The unfolded protein response in models of human mutant G93A amyotrophic lateral sclerosis. 22390177

    Recent studies indicate that endoplasmic reticulum (ER) stress is involved in the pathogenesis of familial and sporadic amyotrophic lateral sclerosis (ALS). ER stress occurs when the ER-mitochondria calcium cycle (ERMCC) is disturbed and misfolded proteins accumulate in the ER. To cope with ER stress, the cell engages the unfolded protein response (UPR). While activation of the UPR has been shown in some ALS models and tissues, ER stress elements have not been studied directly in motor neurons. Here we investigated the expression of XBP1 and ATF6? and phosphorylation of eIF2?, and their modulation, in mutated SOD1(G93A) NSC34 and animal model of ALS. Expression of XBP1 and ATF6? mRNA and protein was enhanced in SOD1(G93A) NSC34 cells. Activation of ATF6? and XBP1 and phosphorylation of eIF2? were detectable in mutated SOD1(G93A) motor but not in wild-type motor neurons. Treatment with the ER stressor thapsigargin enhanced phosphorylation of eIF2? and activated proteolysis of ATF6? and splicing of XBP1 in NSC34 and motor neurons in a time-dependent manner. The present study thus provides direct evidence of activated UPR in motor neurons which overexpress human pathogenic mutant SOD1(G93A) , providing evidence that ER stress plays a major role in ALS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • The NG2 proteoglycan promotes oligodendrocyte progenitor proliferation and developmental myelination. 20006679

    The NG2 proteoglycan has been shown to promote proliferation and motility in a variety of cell types. The presence of NG2 on oligodendrocyte progenitor cells (OPCs) suggests that the proteoglycan may be a factor in expansion of the OPC pool to fill the entire CNS prior to OPC differentiation to form myelinating oligodendrocytes. Comparisons of postnatal cerebellar myelination in wild type and NG2 null mice reveal reduced numbers of OPCs in developing white matter of the NG2 null mouse. Quantification of BrdU incorporation shows that reduced proliferation is a key reason for this OPC shortage, with the peak of OPC proliferation delayed by 4-5 days in the absence of NG2. As a result of the subnormal pool of OPCs, there is also a delay in production of mature oligodendrocytes and myelinating processes in the NG2 null cerebellum. NG2 may promote OPC proliferation via enhancement of growth factor signaling or mediation of OPC interaction with unmyelinated axons.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB980
  • The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2. 26340347

    The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. 16705673

    alpha(1)-Adrenergic receptors (ARs) are not well defined in the central nervous system. The particular cell types and areas that express these receptors are uncertain because of the lack of high avidity antibodies and selective ligands. We have developed transgenic mice that either systemically overexpress the human alpha(1A)-AR subtype fused with the enhanced green fluorescent protein (EGFP) or express the EGFP protein alone under the control of the mouse alpha(1A)-AR promoter. We confirm our transgenic model against the alpha(1A)-AR knockout mouse, which expresses the LacZ gene in place of the coding region for the alpha(1A)-AR. By using these models, we have now determined cellular localization of the alpha(1A)-AR in the brain, at the protein level. The alpha(1A)-AR or the EGFP protein is expressed prominently in neuronal cells in the cerebral cortex, hippocampus, hypothalamus, midbrain, pontine olivary nuclei, trigeminal nuclei, cerebellum, and spinal cord. The types of neurons were diverse, and the alpha(1A)-AR colocalized with markers for glutamic acid decarboxylase (GAD), gamma-aminobutyric acid (GABA), and N-methyl-D-aspartate (NMDA) receptors. Recordings from alpha(1A)-AR EGFP-expressing cells in the stratum oriens of the hippocampal CA1 region confirmed that these cells were interneurons. We could not detect expression of the alpha(1A)-AR in mature astrocytes, oligodendrocytes, or cerebral blood vessels, but we could detect the alpha(1A)-AR in oligodendrocyte progenitors. We conclude that the alpha(1A)-AR is abundant in the brain, expressed in various types of neurons, and may regulate the function of oligodendrocyte progenitors, interneurons, GABA, and NMDA receptor containing neurons.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. 22377907

    Our aim was the search for new sources of cells potentially useful for central nervous system regenerative medicine. Extra-embryonic tissues are promising sources of pluripotent stem cells. Among these, human second-trimester amniotic fluid (AF) contains cell populations exhibiting self-renewal capacity, multipotency and the expression of embryonic cell markers.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers. 19455714

    Axons are linked to induction of myelination during development and to the maintenance of myelin and myelinated tracts in the adult CNS. Currently, it is unknown whether and how axonal plasticity in adult CNS impacts the myelinating cells and their precursors. In this article, we report that newly formed axonal sprouts are able to induce a protracted myelination response in adult CNS. We show that newly formed axonal sprouts, induced by lesion of the entorhino-hippocampal perforant pathway, have the ability to induce a myelination response in stratum radiatum and lucidum CA3. The lesion resulted in significant recruitment of newly formed myelinating cells, documented by incorporation of the proliferation marker bromodeoxyuridine into chondroitin sulphate NG2 expressing cells in stratum radiatum and lucidum CA3 early after lesion, and the occurrence of a 28% increase in the number of oligodendrocytes, of which some had incorporated bromodeoxyuridine, 9 weeks post-lesion. Additionally, a marked increase (41%) in myelinated fibres was detected in silver stained sections. Interestingly, these apparently new fibres achieved the same axon diameter as unlesioned mice but myelin thickness remained thinner than normal, suggesting that the sprouting axons in stratum radiatum and lucidum CA3 were not fully myelinated 9 weeks after lesion. Our combined results show that sprouting axons provide a strong stimulus to oligodendrocyte lineage cells to engage actively in the myelination processes in the adult CNS. (c) 2009 Wiley-Liss, Inc.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • GGF2 (Nrg1-?3) treatment enhances NG2(+) cell response and improves functional recovery after spinal cord injury. 22042562

    The adult spinal cord contains a pool of endogenous glial precursor cells, which spontaneously respond to spinal cord injury (SCI) with increased proliferation. These include oligodendrocyte precursor cells that express the NG2 proteoglycan and can differentiate into mature oligodendrocytes. Thus, a potential approach for SCI treatment is to enhance the proliferation and differentiation of these cells to yield more functional mature glia and improve remyelination of surviving axons. We previously reported that soluble glial growth factor 2 (GGF2)- and basic fibroblast growth factor 2 (FGF2)-stimulated growth of NG2(+) cells purified from injured spinal cord in primary culture. This study examines the effects of systemic administration of GGF2 and/or FGF2 after standardized contusive SCI in vivo in both rat and mouse models. In Sprague-Dawley rats, 1 week of GGF2 administration, beginning 24 h after injury, enhanced NG2(+) cell proliferation, oligodendrogenesis, chronic white matter at the injury epicenter, and recovery of hind limb function. In 2',3'-cyclic-nucleotide 3'-phosphodiesterase-enhanced green fluorescent protein mice, GGF2 treatment resulted in increased oligodendrogenesis and improved functional recovery, as well as elevated expression of the stem cell transcription factor Sox2 by oligodendrocyte lineage cells. Although oligodendrocyte number was increased chronically after SCI in GGF2-treated mice, no evidence of increased white matter was detected. However, GGF2 treatment significantly increased levels of P0 protein-containing peripheral myelin, produced by Schwann cells that infiltrate the injured spinal cord. Our results suggest that GGF2 may have therapeutic potential for SCI by enhancing endogenous recovery processes in a clinically relevant time frame.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K. 21357748

    Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of protein synthesis represents one mechanism used to control the different requirements for myelin sheath at each axo-glia interaction. Prior work has established that β1-integrins are involved in the axoglial interactions that initiate myelination. Here, we show that integrin activation regulates translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3'UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin sheath. Furthermore, knockdown of hnRNP-K inhibits MBP protein synthesis during myelination. Together, these results identify a novel pathway by which axoglial adhesion molecules coordinate MBP synthesis with myelin sheath formation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1410
  • Derivation of Enriched Oligodendrocyte Cultures and OligodendrocyteNeuron Myelinating Co-cultures from Post-natal Murine Tissues. 21876528

    Identifying the molecular mechanisms underlying OL development is not only critical to furthering our knowledge of OL biology, but also has implications for understanding the pathogenesis of demyelinating diseases such as Multiple Sclerosis (MS). Cellular development is commonly studied with primary cell culture models. Primary cell culture facilitates the evaluation of a given cell type by providing a controlled environment, free of the extraneous variables that are present in vivo. While OL cultures derived from rats have provided a vast amount of insight into OL biology, similar efforts at establishing OL cultures from mice has been met with major obstacles. Developing methods to culture murine primary OLs is imperative in order to take advantage of the available transgenic mouse lines. Multiple methods for extraction of OPCs from rodent tissue have been described, ranging from neurosphere derivation, differential adhesion purification and immunopurification (1-3). While many methods offer success, most require extensive culture times and/or costly equipment/reagents. To circumvent this, purifying OPCs from murine tissue with an adaptation of the method originally described by McCarthy & de Vellis (2) is preferred. This method involves physically separating OPCs from a mixed glial culture derived from neonatal rodent cortices. The result is a purified OPC population that can be differentiated into an OL-enriched culture. This approach is appealing due to its relatively short culture time and the unnecessary requirement for growth factors or immunopanning antibodies. While exploring the mechanisms of OL development in a purified culture is informative, it does not provide the most physiologically relevant environment for assessing myelin sheath formation. Co-culturing OLs with neurons would lend insight into the molecular underpinnings regulating OL-mediated myelination of axons. For many OL/neuron co-culture studies, dorsal root ganglion neurons (DRGNs) have proven to be the neuron type of choice. They are ideal for co-culture with OLs due to their ease of extraction, minimal amount of contaminating cells, and formation of dense neurite beds. While studies using rat/mouse myelinating xenocultures have been published (4-6), a method for the derivation of such OL/DRGN myelinating co-cultures from post-natal murine tissue has not been described. Here we present detailed methods on how to effectively produce such cultures, along with examples of expected results. These methods are useful for addressing questions relevant to OL development/myelinating function, and are useful tools in the field of neuroscience.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • NG2, a member of chondroitin sulfate proteoglycans family mediates the inflammatory response of activated microglia. 19878709

    Activation of microglial cells, the resident immune cells of the CNS causes neurotoxicity through the release of a wide array of inflammatory mediators including proinflammatory cytokines, chemokines and reactive oxygen species. In this study, we have investigated the expression of NG2 (also known as CSPG4), one of the members of transmembrane chondroitin sulfate proteoglycans family, in microglial cells and its role on inflammatory reaction of microglia by analyzing the expression of the proinflammation cytokines (interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha)), chemokines (stromal cell-derived factor-1alpha and monocyte chemotactic protein-1) and inducible nitric oxide synthase (iNOS). NG2 expression was not detectable in microglial cells expressing OX-42 in the brains of 1-day old postnatal rat pups and adult rats; it was, however, induced in activated microglial cells in pups and adult rats injected with lipopolysaccharide (LPS). In vitro analysis further confirmed that LPS induced the expression of NG2 in primary microglial cells and this was inhibited by dexamethasone. It has been well demonstrated that LPS induces the expression of iNOS and proinflammatory cytokines in microglia. However in this study, LPS did not induce the mRNA expression of iNOS and cytokines including IL-1beta, and TNF-alpha in microglial cells transfected with CSPG4 siRNA. On the contrary, mRNA expression of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and stromal cell-derived factor-1alpha (SDF-1alpha) was significantly increased in LPS-activated microglial cells after CSPG4 siRNA transfection in comparison with the control. The above results indicate that NG2 mediates the induction of iNOS and inflammatory cytokine expression, but not the chemokine expression in activated microglia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody