Millipore Sigma Vibrant Logo
 

centricon+plus+20+column


390 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (348)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (239)
  • (46)
  • (29)
  • (18)
  • (4)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies. 27424005

    Adeno-associated viruses (AAVs) are promising viral vectors for therapeutic gene delivery, and the approval of an AAV1 vector for the treatment of lipoprotein lipase deficiency has heralded a new and exciting era for this system. However, preclinical and clinical studies show that neutralization from pre-existing antibodies is detrimental for medical application and this hurdle must be overcome before full clinical realization can be achieved. Thus the binding sites for capsid antibodies must be identified and eliminated through capsid engineering. Towards this goal and to recapitulate patient polyclonal responses, a panel of six new mouse monoclonal antibodies (MAbs) has been generated against AAV8 and AAV9 capsids, two vectors being developed for therapeutic application. Native (capsid) dot blot assays confirmed the specificity of these antibodies for their parental serotypes, with the exception of one MAb, HL2372, selected to cross-react against both capsids. Furthermore, in vitro assays showed that these MAbs are capable of neutralizing virus infection. These MAbs will be utilized for structural mapping of antigenic footprints on their respective capsids to inform development of the next generation of rAAV vectors capable of evading antibody neutralization while retaining parental tropism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants. 25592336

    Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP132B
    Nombre del producto:
    Goat Anti-Rabbit IgG Antibody, biotin-SP conjugate
  • Direct and retrograde transduction of nigral neurons with AAV6, 8, and 9 and intraneuronal persistence of viral particles. 23600720

    Recombinant adeno-associated viral (AAV) vectors of serotypes 6, 8, and 9 were characterized as tools for gene delivery to dopaminergic neurons in the substantia nigra for future gene therapeutic applications in Parkinson's disease. While vectors of all three serotypes transduced nigral dopaminergic neurons with equal efficiency when directly injected to the substantia nigra, AAV6 was clearly superior to AAV8 and AAV9 for retrograde transduction of nigral neurons after striatal delivery. For sequential transduction of nigral dopaminergic neurons, the combination of AAV9 with AAV6 proved to be more powerful than AAV8 with AAV6 or repeated AAV6 administration. Surprisingly, single-stranded viral genomes persisted in nigral dopaminergic neurons within cell bodies and axon terminals in the striatum, and intact assembled AAV capsid was enriched in nuclei of nigral neurons, 4 weeks after virus injections to the substantia nigra. 6-Hydroxydopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra reduced the number of viral genomes in the striatum, in line with viral genome persistence in axon terminals. However, 6-OHDA-induced axonal degeneration did not induce any transsynaptic spread of AAV infection in the striatum. Therefore, the potential presence of viral particles in axons may not represent an important safety issue for AAV gene therapy applications in neurodegenerative diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. 12529448

    The stimulation of vascular endothelial growth factor receptor-2 (VEGFR-2) by tumor-derived VEGF represents a key event in the initiation of angiogenesis. In this work, we report that VEGFR-2 is localized in endothelial caveolae, associated with caveolin-1, and that this complex is rapidly dissociated upon stimulation with VEGF. The kinetics of caveolin-1 dissociation correlated with those of VEGF-dependent VEGFR-2 tyrosine phosphorylation, suggesting that caveolin-1 acts as a negative regulator of VEGF R-2 activity. Interestingly, we observed that in an overexpression system in which VEGFR-2 is constitutively active, caveolin-1 overexpression inhibits VEGFR-2 activity but allows VEGFR-2 to undergo VEGF-dependent activation, suggesting that caveolin-1 can confer ligand dependency to a receptor system. Removal of caveolin and VEGFR-2 from caveolae by cholesterol depletion resulted in an increase in both basal and VEGF-induced phosphorylation of VEGFR-2, but led to the inhibition of VEGF-induced ERK activation and endothelial cell migration, suggesting that localization of VEGFR-2 to these domains is crucial for VEGF-mediated signaling. Dissociation of the VEGFR-2/caveolin-1 complex by VEGF or cyclodextrin led to a PP2-sensitive phosphorylation of caveolin-1 on tyrosine 14, suggesting the participation of Src family kinases in this process. Overall, these results suggest that caveolin-1 plays multiple roles in the VEGF-induced signaling cascade.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-184
  • Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. 20211865

    The small GTPase Rac1 seems to play a role in the pathogenesis of atrial fibrillation (AF). The aim of the present study was to characterize the effects of Rac1 overexpression on atrial electrophysiology.In mice with cardiac overexpression of constitutively active Rac1 (RacET), statin-treated RacET, and wild-type controls (age 6 months), conduction in the right and left atrium (RA and LA) was mapped epicardially. The atrial effective refractory period (AERP) was determined and inducibility of atrial arrhythmias was tested. Action potentials were recorded in isolated cells. Left ventricular function was measured by pressure-volume analysis. Five of 11 RacET hearts showed spontaneous or inducible atrial tachyarrhythmias vs. 0 of 9 controls (P less than 0.05). In RacET, the P-wave duration was significantly longer (26.8 +/- 2.1 vs. 16.7 +/- 1.1 ms, P = 0.001) as was total atrial activation time (RA: 13.6 +/- 4.4 vs. 3.2 +/- 0.5 ms; LA: 7.1 +/- 1.2 vs. 2.2 +/- 0.3 ms, P less than 0.01). Prolonged local conduction times occurred more often in RacET (RA: 24.4 +/- 3.8 vs. 2.7 +/- 2.1%; LA: 19.1 +/- 6.3 vs. 1.2 +/- 0.7%, P less than 0.01). The AERP and action potential duration did not differ significantly between both groups. RacET demonstrated significant atrial fibrosis but only moderate systolic heart failure. RacET and statin-treated RacET were not significantly different regarding atrial electrophysiology.The substrate for atrial arrhythmias in mice with Rac1 overexpression is characterized by conduction disturbances and atrial fibrosis. Electrical remodelling (i.e. a shortening of AERP) does not play a role. Statin treatment cannot prevent the structural and electrophysiological effects of pronounced Rac1 overexpression in this model.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-389
    Nombre del producto:
    Anti-Rac1 Antibody, clone 23A8
  • Yap1 is required for endothelial to mesenchymal transition of the atrioventricular cushion. 24831012

    Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart diseases. Normally, heart valve mesenchyme is formed from an endothelial to mesenchymal transition (EMT) of endothelial cells of the endocardial cushions. Yes-associated protein 1 (YAP1) has been reported to regulate EMT in vitro, in addition to its known role as a major regulator of organ size and cell proliferation in vertebrates, leading us to hypothesize that YAP1 is required for heart valve development. We tested this hypothesis by conditional inactivation of YAP1 in endothelial cells and their derivatives. This resulted in markedly hypocellular endocardial cushions due to impaired formation of heart valve mesenchyme by EMT and to reduced endocardial cell proliferation. In endothelial cells, TGFβ induces nuclear localization of Smad2/3/4 complex, which activates expression of Snail, Twist1, and Slug, key transcription factors required for EMT. YAP1 interacts with this complex, and loss of YAP1 disrupts TGFβ-induced up-regulation of Snail, Twist1, and Slug. Together, our results identify a role of YAP1 in regulating EMT through modulation of TGFβ-Smad signaling and through proliferative activity during cardiac cushion development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-570
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. 21476867

    With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Cardiac conduction through engineered tissue. 16816362

    In children, interruption of cardiac atrioventricular (AV) electrical conduction can result from congenital defects, surgical interventions, and maternal autoimmune diseases during pregnancy. Complete AV conduction block is typically treated by implanting an electronic pacemaker device, although long-term pacing therapy in pediatric patients has significant complications. As a first step toward developing a substitute treatment, we implanted engineered tissue constructs in rat hearts to create an alternative AV conduction pathway. We found that skeletal muscle-derived cells in the constructs exhibited sustained electrical coupling through persistent expression and function of gap junction proteins. Using fluorescence in situ hybridization and polymerase chain reaction analyses, myogenic cells in the constructs were shown to survive in the AV groove of implanted hearts for the duration of the animal's natural life. Perfusion of hearts with fluorescently labeled lec-tin demonstrated that implanted tissues became vascularized and immunostaining verified the presence of proteins important in electromechanical integration of myogenic cells with surrounding re-cipient rat cardiomyocytes. Finally, using optical mapping and electrophysiological analyses, we provide evidence of permanent AV conduction through the implant in one-third of recipient animals. Our experiments provide a proof-of-principle that engineered tissue constructs can function as an electrical conduit and, ultimately, may offer a substitute treatment to conventional pacing therapy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1726
    Nombre del producto:
    Anti-Connexin 40 Antibody
  • Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. 24067867

    We recently demonstrated that axonal transport of adeno-associated virus (AAV) is serotype-dependent. Thus, AAV serotype 2 (AAV2) is anterogradely transported (e.g., from cell bodies to nerve terminals) in both rat and non-human primate (NHP) brain. In contrast, AAV serotype 6 (AAV6) is retrogradely transported from terminals to neuronal cell bodies in the rat brain. However, the directionality of axonal transport of AAV6 in the NHP brain has not been determined. In this study, two Cynomolgus macaques received an infusion of AAV6 harboring green fluorescent protein (GFP) into the striatum (caudate and putamen) by magnetic resonance (MR)-guided convection-enhanced delivery. One month after infusion, immunohistochemical staining of brain sections revealed a striatal GFP expression that corresponded well with MR signal observed during gene delivery. As shown previously in rats, GFP expression was detected throughout the prefrontal, frontal and parietal cortex, as well as the substantia nigra pars compacta and thalamus, indicating retrograde transport of the vector in NHP. AAV6-GFP preferentially transduced neurons, although a few astrocytes were also transduced. Transduction of non-neuronal cells in the brain was associated with the upregulation of the major histocompatibility complex-II and lymphocytic infiltration as previously observed with AAV1 and AAV9. This contrasts with highly specific neuronal transduction in the rat brain. Retrograde axonal transport of AAV6 from a single striatal infusion permits efficient transduction of cortical neurons in significant tissue volumes that otherwise would be difficult to achieve.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Atrial fibrillation complicated by heart failure induces distinct remodeling of calcium cycling proteins. 25775120

    Atrial fibrillation (AF) and heart failure (HF) are two of the most common cardiovascular diseases. They often coexist and account for significant morbidity and mortality. Alterations in cellular Ca2+ homeostasis play a critical role in AF initiation and maintenance. This study was designed to specifically elucidate AF-associated remodeling of atrial Ca2+ cycling in the presence of mild HF. AF was induced in domestic pigs by atrial burst pacing. The animals underwent electrophysiologic and echocardiographic examinations. Ca2+ handling proteins were analyzed in right atrial tissue obtained from pigs with AF (day 7; n = 5) and compared to sinus rhythm (SR) controls (n = 5). During AF, animals exhibited reduction of left ventricular ejection fraction (from 73% to 58%) and prolonged atrial refractory periods. AF and HF were associated with suppression of protein kinase A (PKA)RII (-62%) and Ca2+-calmodulin-dependent kinase II (CaMKII) δ by 37%, without changes in CaMKIIδ autophosphorylation. We further detected downregulation of L-type calcium channel (LTCC) subunit α2 (-75%), sarcoplasmic reticulum Ca2+-ATPase (Serca) 2a (-29%), phosphorylated phospholamban (Ser16, -92%; Thr17, -70%), and phospho-ryanodine receptor 2 (RyR2) (Ser2808, -62%). Na+-Ca2+ exchanger (NCX) levels were upregulated (+473%), whereas expression of Ser2814-phosphorylated RyR2 and LTCCα1c subunits was not significantly altered. In conclusion, AF produced distinct arrhythmogenic remodeling of Ca2+ handling in the presence of tachycardia-induced mild HF that is different from AF without structural alterations. The changes may provide a starting point for personalized approaches to AF treatment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-052
    Nombre del producto:
    Anti-phospho-Phospholamban (Ser16) Antibody